DoE for Scale-Up
 using MODDE ${ }^{\circledR}$ and DoE-DiVa ${ }^{\circledR}$

Session 2: Scale Up and the Similarity Principle -- 25.01. 2023

Prof. Dr. Andreas Orth
umes $\forall \boldsymbol{f t}$
Gefördert durch:
家利 $\left\lvert\, \begin{aligned} & \text { Bundesministerium } \\ & \text { furr Wirtschaft } \\ & \text { und }\end{aligned}\right.$
und Klimaschutz
aufgrund eines Beschlusses des Deutschen Bundestages

Refresh on DoE-DiVa?

- DoE-DiVa is a user-friendly Software for Engineers and Scientists in R\&D, developed in JAVA by umes $\forall \mathrm{ft}$
- DoE-DiVa enhances Design of Experiments and makes it more intelligent, with User-factors and eXplaining-factors
- DoE-DiVa enhances Similarity Theory for Dimensionless Variables by integrating DoE for Scale-Up and Scale-Down

This is how the DoE-DiVa looks.

DoE-DiVa's conductor is easy

- DoE-DiVa let's the user choose his Dimensions, Units, Transforms and Scaling and carries them through all the User-Software work session
- DoE-DiVa differentiates between
- $\underline{\boldsymbol{u}}$-factors and \underline{x}-factors

DoE-DiVa's conductor is flexible

- Based on factor dimensions DoE-DiVa suggests the Transformation to get dimensionless x-factors,
- allows adjusting these,

- allows editing them

Factor Input VMatrix Input VMatrix Keep Columns Respe
How Would you like to generate a VMatrix?

DoE-DiVa's conductor is communicative

- DoE-DiVa exports x-factors and x -designs to MODDE ${ }^{\circledR}$
- DoE-DiVa exports formulae for \mathbf{u}-designs to MODDE ${ }^{\circledR}$ for optimization at low and high scale

	Fr	cT__x	d	ncr	Q_1
RO	-9,398	-4,30	20	0,046	2,519
R1	-9,072	-4,30	20	0,053	2,411
R2	-8,800	-4,30	20	0,057	2,311
R3	-8,605	-4,30	20	0,060	2,233
R4	-8,451	-4,30	20	0,063	2,178
R5	-9,056	-4,00	20	0,062	2,478
R6	-8,800	-4,00	20	0,069	2,392
R7	-8,608	-4,00	20	0,074	2,331
d_C		(10^(- 0.172414*v1+((Log10(0.01*v3) - - 0.172414*			
q_C		(10^(0.068966*v1+2.5*((Log10)(0.01*v3) - - 0.17241			
cT_C		(10^(v2))/1.0E-6			
ncr_C		(10^(v6+(-0.172414*v1+((Log10(0.01*v3) - (- 0.172			
Q_1_C		Log10(v4)+(- 0.172414*v1+((Log10(0.01*v3) - - 0.17			

1. Dimensional Analysis and Similarity Principle

2. Dimensionless eXplaining factors vs. User factors
3. Using DoE-DiVa for preparing simple Scale Up
4. Using MODDE to perform the Scale Up

SI system: Base Dimensions and Base Units

"The International System of Units, known by the international abbreviation $\boldsymbol{S I}$ in all languages and sometimes ... as the $\boldsymbol{S I}$ system, is the modern form of the metric system and the world's most widely used system of measurement.
It is the only system of measure-

Symbol	Base Unit	Base Dimension
\mathbf{m}	metre	length
$\mathbf{k g}$	kilogram	mass
\mathbf{s}	second	time
\mathbf{A}	ampere	electric current
$\mathbf{K e l}$	kelvin	thermodynamic temperature
$\mathbf{m o l}$	mole	amount of substance
$\mathbf{c d}$	candela	luminous intensity

SI system: Derived Dimensions and Units

"The system allows for an unlimited number of additional units, called derived units, which can always be represented as products of powers of the base units, possibly with a nontrivial numeric multiplier. When that multiplier is one, the unit is called a coherent derived unit."

Symbol	Unit	Derived Dimension	Relation	m	kg	s A	Kel	mol cd
1/s	hertz	frequency	1/time(s)			-1		
N	newton	force	mass(kg)*acceleration ($\mathrm{m} / \mathrm{s}^{2}$)	1	1	-2		
Pas	pascal	pressure	force(N)/area(m^{2})	-1	1	-2		
J	joule	energy	force(N) ${ }^{\text {distance }}$ (m)	2	1	-2		
w	watt	power	energy(J)/time(s)	2	1	-3		
v	volt	potential difference	power(W)/electric current(A)	2	1	-3-1		
C	coulomb	electric charge	electric current(A)*time(s)			11		
M	kg/mol (!!)	molar mass	mass(kg)*amount of substance(mol)		1			-1
c_{p}	J/kg-Kel	specific heat capacity	energy(J)/mass(kg)/Kel	2		2	-1	

https://en.wikipedia.org/wiki/International_System_of_Units

Permitted non-SI units (in our words „User"-Units)

"There is a special group of units that are called "non-SI units that are accepted for use with the SI". Most of these, in order to be converted to the corresponding SI unit, require conversion factors that are not necessarily powers of ten."

Symbol	$\begin{gathered} \text { Non-SI } \\ \text { "User"-Unit } \end{gathered}$	Dimension	Relation to SI-Unit gradient * SI-Unit + offset	m	kg	S	A	Kel	mol	cd
min	min	time	$\mathrm{min}=60 * \mathrm{~s}+0$			1				
rpm	rpm	frequency	$1 / \mathrm{min}=0,0166666667 * 1 / \mathrm{s}+0$			-1				
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{Celsius}$	temperature	${ }^{\circ} \mathrm{C}=1$ * Kel + 273,15					1		
$\mathrm{cm}^{3} / \mathrm{s}$	ccm/sec	volume or gas flow	$\mathrm{cm}^{3} / \mathrm{sec}=0,000001 * \mathrm{~m}^{3} / \mathrm{s}+0$	3		-1				
M [g/mol]	$\mathrm{gr} / \mathrm{mol}$	molar mass	$\mathrm{M}[\mathrm{g} / \mathrm{mol}]=\mathbf{0 , 0 0 1} * \mathrm{~kg} / \mathrm{mol}+0$		1				-1	
atm	atmosphere	pressure	atm $=101325 *$ Pas +0	-1	1	-2				

https://en.wikipedia.org/wiki/International_System_of_Units

25/01/23 umes $\begin{aligned} & \text { ft }\end{aligned}$

Buckingham π theorem of Dimensional Analysis

"The Buckingham $\boldsymbol{\pi}$ theorem describes how every physically meaningful equation involving n variables can be equivalently rewritten as an equation of $n-m$ dimensionless parameters, where m is the rank of the dimensional matrix. ... provides a method for computing these ... from the given variables."

Symbol	Unit	Dimension	Relation	m	kg	s		Kel	mol	cd	Froude	cT	inv Gasflow
rpm	rpm	frequency	1/min $=0,0166666667 * 1 / s+0$			-1							1
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{Celsius}$	temperature	${ }^{\circ} \mathrm{C}=1$ * Kel + 273,15					1					
$\mathrm{cm}^{3} / \mathrm{s}$	ccm/sec	volume or gas flow	$\mathrm{cm}^{3} / \mathrm{sec}=0,000001 * \mathrm{~m}^{3} / \mathrm{s}+0$	3		-1					2		-1
g	gravity consant	acceleration	acceleration ($\mathrm{m} / \mathrm{s}^{2}$)	1		-2					-1		
d	cm	length	$\mathrm{cm}=0,01 * \mathrm{~m}$	1							-5		3
c	dimensionless	vol/vol concentration	volume (m^{3})/volume $\left(\mathrm{m}^{3}\right)$	0	0	0						1	
Fr	dimensionless	power number	power/density/frequency ${ }^{3}$ /length^5	0	0	0							
Q_1	dimensionless	Reynolds number	area*frequency*density/viscosity	0	0	0							

https://en.wikipedia.org/wiki/Dimensional_analysis
umes Θ ft

Similarity theory - Ähnlichkeitstheorie

Similarity theory is a technique in physics and engineering that describes how a physical process (large scale original) is traced back to a model process (small scale model) with the help of dimensionless ratios. This theory is both used for theoretical considerations as well as for experimentation.

Abb. 7. Prozeß-Charakteristik des Schaumzerstörers für unterschiedliche Konzentrationen von Mersolat H.
Marco Zlokarnik: Auslegung und Dimensionierung eines mechanischen Schaumzerstörers. Chem-Ing.-Tech. (56) 1984 Nr. 11, S. 842

The Similarity Principle and its Contraposition

If the state of a system can be completely described by the dimensionless factors,
then two manifestations of a system behave the same, if they have the same settings of the dimensionless factors (x-factors).
even if the real factors (u-factors) have different setting values.

Contraposition: Influencing factors that induce the most change in a system must be dimensionless.

Therefore: optimal experimental design, with maximal information (=variation), and with minimal experimental effort must be for dimensionless factors.

1. Dimensional Analysis and Similarity Principle
2. Dimensionless eXplaining factors vs. User factors
3. Using DoE-DiVa for preparing simple Scale Up
4. Using MODDE to perform the Scale Up

The general DoE-DiVa-approach

u: User-factor, to be set in the experiment, e.g. Temp, pressure etc.
x: eXplaining-factor, to be used in the model, e.g. a force-ratio $\boldsymbol{T}_{\boldsymbol{x}}$: transformation to get from \boldsymbol{u} to $\boldsymbol{x}, \mathrm{e} . \mathrm{g}$. ratio, dimensionless variable c: coefficients or parameters in the model, \boldsymbol{f}, to be determined by model FIT z: measured response value
\boldsymbol{y} : transformed response value, e.g. ratio or product of $a \boldsymbol{z}$ and some \boldsymbol{u} $\boldsymbol{T}_{\boldsymbol{y}}$: transformation to get from \boldsymbol{z} to \boldsymbol{y}, may also just be log or neg-log

Todays Scale-Up-example:

u: User-factors, $\boldsymbol{d}=$ diameter (to scale up), $\boldsymbol{q}=$ volume flow, $\boldsymbol{c} \boldsymbol{T}=$ tenside conc.
x: dimensionless eXplaining-factor: Froude number and cT_x (vol/vol)
$\boldsymbol{T}_{\mathbf{x}}$: transformation: $\boldsymbol{F r}=\boldsymbol{q}^{\mathbf{2}} / \mathbf{d}^{\mathbf{5}} \boldsymbol{g}, \mathbf{c} \boldsymbol{T}_{-} \boldsymbol{x}=\boldsymbol{c} \boldsymbol{T} .(\boldsymbol{g}=$ gravitational constant)
c: coefficients or parameters in the model, \boldsymbol{f}, to be determined by model FIT
z: measured response value, ncr = critical revolution number
y: dimensionless response value, Q_1
$\boldsymbol{T}_{\boldsymbol{y}}$: transformation to get from \mathbf{z} to $\boldsymbol{y}, \mathbf{Q} \mathbf{1}=n c r / q^{*} d^{\mathbf{3}}$

The role of the Transformations

Design: How to get u from f and the transformation

Model Fit: how to get coefficients, c, from x and y

Optimization: how to get the u from the specification for z

The Scale-Up principle - using similarity

Fit the model here (green plane)
for dimensionless Fr and $c T$
$T_{x}{ }^{-1}$
Formulae for MODDE!

d_C	$\left(10^{\wedge}\left(-0.172414^{*} v 1+((L)\right.\right.$
q_C	$\left(10^{\wedge}\left(0.068966^{*} v 1+2.5^{*}(\right.\right.$
cT_c	$\left(10^{\wedge}(v 2)\right) / 1.0 \mathrm{E}-6$
ncr_C	$\left(10^{\wedge}\left(v 6+\left(-0.172414^{*} v 1\right.\right.\right.$
Q_1_c	$\log 10(v 4)+\left(-0.172414^{*}\right.$

Transfer the optimum to the high scale, here at the right where diameter is high

Do experiments here at the left where diameter is low

1. Dimensional Analysis and Similarity Principle
2. Dimensionless eXplaining factors vs. User factors
3. Using DoE-DiVa for preparing simple Scale Up
4. Using MODDE to perform the Scale Up

Auslegung und Dimensionierung eines mechanischen Schaumzerstörers*

Marko Zlokarnik**
(C) Verlag Chemie GmbH, D-6940 Weinheim 1984 0009-286X/84/1111-0839\$02.50/0

Scale-Up example: Defoamer

$\mathrm{u}_{1}=\mathrm{d}=$ diameter,
20 to 40 cm (Scale-Up)
$\mathrm{u}_{2}=\mathrm{q}=$ gasThroughput,
1.6 to $3.4 \mathrm{~cm}^{3} / \mathrm{s}$
$\mathrm{u}_{3}=\mathrm{cT}=$ tensileConc,
50 to 100 ppm
$\mathrm{u}_{4}=\mathrm{g}=$ gravity, const
$9.81 \mathrm{~m} / \mathrm{s}^{2}$

	u_{1}	-5	0
	u_{2}	2	0
Exponent V-Matrix	u_{3}	0	1
(for factors)	u_{4}	-1	0

By the Similarity Principle of DA, moving orthogonally to dimensionless plane, along d_su, leaves the system invariant. Experiments for fitting $\boldsymbol{y}=f_{\text {causal }}(\boldsymbol{x})$ can be done at $\boldsymbol{d}=\mathbf{2 0} \mathbf{~ c m}$

Step 1: u-factors

Step 2: x-factors

Design Analysis
Conductor View Settings - View Design Design

How Would you like to generate a VMatrix?

$$
\begin{aligned}
& F r=q^{2} / d^{5} g, \\
& c T_{-} x=c T
\end{aligned}
$$

Info, T - transformation as a matrix, this T is easily invertible for fixed $d=$ low or high -
 Factor Input VMatrix Input VMatrix Keep Columns Responses Settings Design Variation Generate Design
 Relayed VMatrix

Step 3: choose x-factors to use

Factor Input VMatrix Input VMatrix Keep Columns Responses Settings Design Variation Generate Design
Select Dimension-less factor(s) to Keep

VMatrix : Correlation

	A		B	C
$\mathbf{1}$	\#	Fr	CT_x	
$\mathbf{2}$	q	2	0	
$\mathbf{3}$	cT	0	1	

[^0]
Step 4: define z-response(s)

Step 5: define y-response(s)

```
Conductor View Settings - View Design Design Diagn. - 
```

Design Settings
|Vmatrix }x\mathrm{ x-Settings u-Settings VRes Wres y-response(s)

```
\begin{tabular}{l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c}{ B } \\
\hline \(\mathbf{1}\) & & PI4_ncr \\
\hline \(\mathbf{2}\) & d & 3 \\
\hline \(\mathbf{3}\) & q & -1 \\
\hline \(\mathbf{4}\) & CT & 0 \\
\hline \(\mathbf{5}\) & MC & 0 \\
\hline \(\mathbf{6}\) & g & 0 \\
\hline \(\mathbf{7}\) & ncr & 1 \\
\hline & & \\
\hline
\end{tabular}

\section*{Step 6: view and edit x-settings}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Vmatrix & \(x\)-Settings & u-Settings & VRes & \multicolumn{2}{|l|}{y-response(s)} & & & \\
\hline \# & Weight & Outer Low & User Low & Inner Low & Mean & Inner High & User High & Outer High \\
\hline Fr & 1.0 & -9.08814 & -9.08814 & -9.08814 & -8.76078 & -8.43342 & -8.43342 & -8.43342 \\
\hline cT_X & 1.0 & -4.30103 & -4.30103 & -4.30103 & -4.15052 & -4.0 & -4.0 & -4.0 \\
\hline MC & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline g & 0.0 & 0.991226 & 0.991226 & 0.991226 & 0.991226 & 0.991226 & 0.991226 & 0.991226 \\
\hline d_su & 0.0 & -0.69897 & -0.69897 & -0.69897 & -0.69897 & -0.69897 & -0.69897 & -0.69897 \\
\hline Transformation
LOG
back-transform & \multicolumn{2}{|r|}{Use
Inner Outer
Inbetween User} & & Setting & & \multicolumn{2}{|l|}{Generate x-Settings} & \\
\hline & & & & & & Previous & Next & Abbrechen \\
\hline 25/01/23 & & & (c) Prof. An & dreas Orth, Umesoft & mbH, Eschborn & & & 29 \\
\hline
\end{tabular}

\section*{Step 6ff: \(x\)-settings}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Vmatrix } & x-Settings & u-Settings & VRes & Wres & \multicolumn{1}{c|}{ y-response(s) } \\
\hline \multicolumn{1}{|c|}{ \# } & Weight & Outer Low & User Low & Inner Low & Mean \\
\hline Fr & 1.0 & -9.08814 & -9.08814 & -9.08814 & -8.76078 \\
\hline CT__ & 1.0 & -4.30103 & -4.30103 & -4.30103 & -4.15052 \\
\hline MC & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline g & 0.0 & 0.991226 & 0.991226 & 0.991226 & 0.991226 \\
\hline d_su & 0.0 & -0.69897 & -0.69897 & -0.69897 & -0.69897 \\
\hline
\end{tabular}


Tran
back-transform Inbetween
In this example inner limits and outer limits are the same

\section*{Step 7: select the design variation}
-

Factor Input VMatrix Input VMatrix Keep Columns Responses Settings Design Variation
Select Design Variation
- Generate Design
- Import Design
- Generate Candidate Set

Performed Design for Analysis (and Prediction)
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{2}{|c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline \(\mathbf{1}\) & & C \\
\hline \(\mathbf{2}\) & 2 & & cT \\
\hline \(\mathbf{3}\) & 3 & 1,63 & 50 \\
\hline \(\mathbf{4}\) & 4 & 2,23 & 50 \\
\hline \(\mathbf{5}\) & 5 & 2,79 & 50 \\
\hline \(\mathbf{6}\) & 6 & 3,33 & 50 \\
\hline \(\mathbf{7}\) & 7 & 1,66 & 100 \\
\hline \(\mathbf{8}\) & 8 & 2,23 & 100 \\
\hline \(\mathbf{9}\) & \(\mathbf{9}\) & 2,78 & 100 \\
\hline & & 3,37 & 100 \\
\hline
\end{tabular}

\section*{Step 7f: Look at the design (u-... and x-...)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Design Analysis} \\
\hline \multicolumn{3}{|l|}{Conductor} & \multicolumn{2}{|l|}{View Settings *} & \multicolumn{2}{|l|}{View Design} & \multicolumn{2}{|l|}{Design Diagn. -} \\
\hline \multicolumn{9}{|l|}{Design \(\times\)} \\
\hline & A & & B & C & D & E & F & G \\
\hline 1 & & \multicolumn{2}{|l|}{Fr} & cT_x & MC & 9 & d_su & Q1 \\
\hline 2 & RO & \multicolumn{2}{|l|}{-9,0720008} & -4,30103 & 0 & ,9912261 & -2,092207 & 0 \\
\hline 3 & R1 & \multicolumn{2}{|l|}{-8,7997663} & -4,30103 & 0 & ,9912261 & -2,04527 & 0 \\
\hline 4 & R2 & \multicolumn{2}{|l|}{-8,6051676} & -4,30103 & 0 & ,9912261 & \(-2,0117186\) & 0 \\
\hline 5 & R3 & \multicolumn{2}{|l|}{-8,4514876} & -4,30103 & 0 & ,9912261 & -1,985222 & 0 \\
\hline 6 & R4 & \multicolumn{2}{|l|}{-9,0561599} & -4 & 0 & ,9912261 & -2,0894758 & 0 \\
\hline 7 & R5 & \multicolumn{2}{|l|}{-8,7997663} & -4 & 0 & ,9912261 & -2,04527 & 0 \\
\hline 8 & R6 & \multicolumn{2}{|l|}{-8,6082865} & -4 & 0 & ,9912261 & -2,0122563 & 0 \\
\hline 9 & R7 & \multicolumn{2}{|l|}{-8,4411163} & -4 & 0 & ,9912261 & -1,9834338 & 0 \\
\hline & & & & ( \({ }^{\text {P }} \mathrm{x}\) & & caled & & \\
\hline
\end{tabular}

\section*{Step 7ff: Look at the design (u-... and x-...)}

1. Dimensional Analysis and Similarity Principle Dimensionless eXplaining factors vs. User factors
2. Using DoE-DiVa for preparing simple Scale Up
3. Using MODDE to perform the Scale Up

\section*{Step 8: Enter (z-)results; Export to MODDE \({ }^{\circledR}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Design Analysis} \\
\hline \multicolumn{2}{|r|}{Conductor} & ctor View & View Settings - & View Design & \multicolumn{4}{|c|}{Design Diagn. -} \\
\hline \multicolumn{9}{|l|}{Design X x-Design Ok Plots \(u\)-Design Ok Plots} \\
\hline & A & B & c & D & E & F & G & \\
\hline 1 & & d & 9 & CT & MC & 9 & ncr & \\
\hline 2 & Ro & 20,0000002 & 1,63 & 49,9999995 & 1 & 9,8000005 & 052506284 & \\
\hline 3 & R1 & 20,0000002 & 2,2300002 & 49,9999995 & 1 & 9,8000005 & , 057087872 & \\
\hline 4 & R2 & 20,0000002 & 2,79 & 49,9999995 & 1 & 9,8000005 & . 05958259 & \\
\hline 5 & R3 & 20,0000002 & 3,3299997 & 49,9999995 & 1 & 9,8000005 & 062667183 & \\
\hline 6 & R4 & 20,0000002 & 1,66 & 100 & 1 & 9,8000005 & . 062440653 & \\
\hline 7 & R5 & 20,0000002 & 2,2300002 & 100 & 1 & 9,8000005 & |,068718629 & \\
\hline 8 & R6 & 20,0000002 & 2,78 & 100 & 1 & Copy & & Ctri+c \\
\hline 9 & R7 & 20,0000002 & 3,37 & 100 & 1 & Paste & & Ctri+V \\
\hline \multicolumn{9}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Comment cell \\
Filter \\
Show All \\
Export \\
Copy Filtered to Clipboard \\
Merge Filtered Clipboard \\
Fit Columns
\end{tabular}}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{\(\bigcirc\) - uu \(u \bigcirc x\) ¢ \(\bigcirc^{\text {scaled }}\)} \\
\hline
\end{tabular}


\section*{x-Design and u-formulae exported to MODDE \({ }^{\circledR}\)}


\section*{Step 9: Use MODDE \({ }^{\oplus}\) to Analyse and Optimize}
\begin{tabular}{|c|c|}
\hline \(\Theta^{\text {back }}\) & New \\
\hline Info & \multirow[t]{2}{*}{Experimental design Start the classical experimental design setup from here.} \\
\hline New & \\
\hline Open & \\
\hline Save & Using existing design \\
\hline Sove os & \multirow[b]{2}{*}{篤 \(\begin{aligned} & \text { Paste data } \\ & \text { Paste data into a spreadsheet }\end{aligned}\)} \\
\hline Print & \\
\hline Share & \\
\hline Close & 19. Import extermal design Import a design saved in another file format \\
\hline \begin{tabular}{l}
Help \\
Options
\end{tabular} & \begin{tabular}{l}
Complement design \\
Add new experiments to resolve interactions or non-linearities in the current design.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{25/01/23} \\
\hline
\end{tabular}

4it Design Wizard
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Data sp & & \multicolumn{4}{|c|}{Responses} & & Factors \\
\hline \multicolumn{8}{|l|}{Format spreadsheet} \\
\hline \(\square\) Header row & & Exp name & 2 & 3 & 4 & Response & Response \\
\hline \(\square\) Abbrevition row & 1 & & Fr & cT_x & d & ncr & Q_1 \\
\hline Exprame & 2 & Ro & -9,39794 & -4,30103 & 20 & 0,0462388 & 2.51888 \\
\hline Exp name & 3 & R1 & -9,072 & -4.30103 & 20 & 0.0525063 & 241111 \\
\hline \(\square\) Run order & 4 & R2 & -8,79977 & -4,30103 & 20 & 0,0570879 & 2,31133 \\
\hline \(\square\) Fators & 5 & R3 & -8,60517 & -4,30103 & 20 & 0.0595826 & 2.23261 \\
\hline Responses & 6 & R4 & -8,45149 & \(-4,30103\) & 20 & 0,0626672 & 2,17769 \\
\hline & 7 & R5 & -9,05616 & -4 & 20 & 0.0624407 & 2.47845 \\
\hline \(\square\) Include row & 8 & R6 & -8,79977 & 4 & 20 & 0.0687186 & 2,39186 \\
\hline \(\square\) Exclude & 9 & R7 & -8.60829 & -4 & 20 & 0.0744702 & 233103 \\
\hline & 10 & R8 & -8,44112 & -4 & 20 & 0,0796169 & 2,27647 \\
\hline & 11 & R9 & -8,20357 & -4 & 20 & 0.0917907 & 2.21948 \\
\hline & 12 & R10 & \(-8,74353\) & -4,15052 & 20 & 0,0462388 & 2,17769 \\
\hline & 13 & R11 & -8,74353 & -4,15052 & 40 & 0.0917907 & 2.51888 \\
\hline
\end{tabular}


\section*{Step 9ff: Prepare the worksheet ( \(u-T^{-1}\) ransforms)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{3}{|l|}{Response Definition} & \multirow[t]{3}{*}{\(\times\)} \\
\hline \multicolumn{5}{|l|}{Ш Responses} & \multirow[t]{2}{*}{\begin{tabular}{l}
Response name \\
Abbreviation:
\end{tabular}} & \begin{tabular}{l}
d_C \\
Units:
\end{tabular} & & \\
\hline & Name & Abbreviation & Units & Type & & & & \\
\hline 1 & ncr & ncr & & Regular & Setting Power T & ransform Saling & & \\
\hline 2 & Q1 & Q_1 & & Regular & Eormula: &  & (-0.in & \\
\hline 3 & d_C & d_C & & Derived: ( ¢ \(^{\sim} 1-0.172414 * v 1+\left(\left(\log 10\left(0.01^{*} \mathrm{v} 3\right)-(-0.1\right.\right.\) & & & & \\
\hline 4 & q_C & q_C & & Derived: ( \(10^{\wedge}\left(0.068966^{*} \mathrm{v} 1+2.5^{*}\left(\log 10\left(0.01^{*} \mathrm{v} 3\right)-(-0\right.\right.\) & Response potimim & Iratoon setings: & & \\
\hline 5 & cT_C & cT2 & & Derived: \(\left(10^{\wedge}(\mathrm{v} 2)\right) / 1.0 \mathrm{E}-6\) & Qbbjedive: & Predicted \(\vee\) (1) & & \\
\hline 6 & ncr_C & nc2 & & Derived: ( \(10^{\wedge}\left(\mathrm{v} 6+\left(-0.172414 * v 1+\left(\left(\log 10\left(0.01^{*} \mathrm{v} 3\right)-(\right.\right.\right.\right.\) & Min: & Iarget: Max & & \\
\hline 7 & Q1_C & Q_2 & & Derived: \(\log 10(\mathrm{v} 4)+\left(-0.172414^{*} \mathrm{v} 1+\left(\left(\log 10\left(0.01^{*} \mathrm{v} 3\right)\right.\right.\right.\). & & & & \\
\hline + & Add... & & & & & & ок & Cancel \\
\hline
\end{tabular}

Add „derived responses" for the u-factors: \(d_{-} C, q_{-} C, c T_{-} C\), then add „derived responses" for the responses, \(\boldsymbol{n c r}\) _C, Q_1_C, using the formulae that the DoE-DiVa provided.

\section*{Step 9fff: Check the worksheet (u-T-1ransforms)}


\section*{Step 10: Edit the model to be used for FIT}


\section*{Step 10f: FIT the model - y-response to \(x\)-design}


\section*{Step 10ff: Check obs vs pred for the z-response,}



\section*{Step 11f: Before we optimize: Think}
ncr was (already) minimal rotation, for which defoaming works. We in fact control \(n, n\) must be \(>\) ncr.

What we probably want: Given a gas throughput, \(\boldsymbol{q}\), (that causes formation of foam), what nor should we use, and how much tenside, \(\boldsymbol{C T}\) ?


\section*{Step 11ff: Optimization result at \(d=40\)}


\section*{Step 11fff: Optimization result at d=30}


\section*{Step 11ffff: Optimization result at \(d=20\)}


\section*{Step 12: Validating Scale Up, when data are available}

We have data*

 for \(d=30 / 40\) !

Import the u-factor data into the
DoE-DiVa
nomem nom
* Chem.-Ing.-Tech. 56 (1984) Nr. 11, S. \(839-844\)
(C) Verlag Chemie GmbH, D-6940 Weinheim 1984 0009-286X/84/1111-0839\$02.50/0

\section*{Step 12f: Validating Scale Up}

Enter z-response data* for \(d=30 / 40\), then Copy/Paste to MODDE \({ }^{\circledR}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Design Analysis} \\
\hline \multicolumn{2}{|r|}{Conductor} & \multicolumn{3}{|l|}{or View Settings -} & \multicolumn{2}{|l|}{View Design} & Design Diagn. - \\
\hline \multicolumn{2}{|l|}{Design \(\times\)} & \multicolumn{2}{|l|}{u-Design Ok Plots} & \multicolumn{3}{|l|}{x-Design Ok Plots} & Coefficients -Q_1 \\
\hline & A & B & c & D & E & F & \\
\hline 1 & & d & q & cT & MC & 9 & ncr \\
\hline 2 & R0 & 30,0000031 & 1,63 & 50 & 1 & 9,8000005 & , 031817929 \\
\hline 3 & R1 & 30,0000031 & 2,22 & 50 & 1 & 9,8000005 & ,033732493 \\
\hline 4 & R2 & 30,0000031 & 2,75 & 50 & 1 & 9,8000005 & ,035305374 \\
\hline 5 & R3 & 30,0000031 & 3,29 & 50 & 1 & 9,8000005 & ,039430573 \\
\hline 6 & R4 & 30,0000031 & 4,39 & 50 & 1 & 9,8000005 & ,043243216 \\
\hline 7 & R5 & 30,0000031 & 5,5 & 50 & 1 & 9,8000005 & ,046578829 \\
\hline 8 & R6 & 40,0000008 & 2,2 & 50 & 1 & 9,8000005 & . 025731123 \\
\hline 9 & R7 & 40,0000008 & 2,81 & 50 & 1 & 9,8000005 & ,027387765 \\
\hline & \(\bullet\) & \(u\) & xx & & \(\bigcirc\) & aled & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Design \(\times\)} & \multicolumn{2}{|l|}{u-Design Ok Plots x} & \multicolumn{2}{|l|}{x-Design Ok Plots} & Coefficients-Q 1 & 1 Fit-Q 1 \\
\hline & A & B & c & D & E & F & G \\
\hline 1 & & Fr & cT_-x & MC & 9 & d_su & Q 1 \\
\hline 2 & R0 & -9,9524571 & -4,30103 & P & 9912261 & -2,0679186 & 2,721848208398. \\
\hline 3 & R1 & -9,6841264 & -4,30103 & \(p\) & ,9912261 & -2,0216547 & 2,613059338910: \\
\hline 4 & R2 & -9,498167 & -4,30103 & p & ,9912261 & -1,9895927 & 2,539872016461 \\
\hline 5 & R3 & -9,3424406 & -4,30103 & \(p\) & ,9912261 & -1,9627433 & 2,510001088230. \\
\hline 6 & R4 & -9,0919033 & -4,30103 & \(p\) & ,9912261 & -1,9195472 & 2,424817384983: \\
\hline 7 & R5 & \(-8,896107\) & -4,30103 & p & ,9912261 & -1,8857892 & 2,359189766095 \\
\hline 8 & R6 & -10,3166807 & -4,30103 & p & ,9912261 & -2,005777 & 2,874216040818: \\
\hline 9 & R7 & -10,1041134 & -4,30103 & p & ,9912261 & -1,9691275 & 2,795030292758 \\
\hline 10 & R8 & -9,9697783 & -4,30103 & \(p\) & ,9912261 & -1,9459663 & 2,7453188785881 \\
\hline 11 & R9 & -9,6855032 & -4,30103 & p & ,9912261 & -1,8969533 & 2,657571832938: \\
\hline & & & & & & & \\
\hline & & uu & xx & & scaled & & \\
\hline
\end{tabular}

\section*{Step 12ff: Use MODDE \({ }^{\circledR}\) Prediction set}


\section*{Step 12fff: Use MODDE \({ }^{\circledR}\) Prediction Scatter Plot}



\footnotetext{
25/01/23
}
and in particular to:
Chhawang Lama
aufgrund eines Beschlusses
des Deutschen Bundestages
Anthony Orth```


[^0]:    Max 2 x -factors is possible.

