

E	lit Help	a\progra	am\defo	amer23\d	efoamerPro	ject23.diva)						- 0
ign	Analysis						Name	diameter			Abbr	d
nduc	or View Settings	• V	/iew Desi	gn [Design Diag	n. 💌						
	1					_	Role Type	SCUP -	CASE2	0	Dimension	
efin Kev	e Factors Name	Low	Hiah	Role	Unit	Transfor	Dimension Type Unit	cm 👻	• +		Case 1 :	"Scale independence": Limits defined for CONTR-factors are valid at all scales.T design will be set up at low scale, in a way that limits are valid at both scales.
Key	diameter	20.0	High 40.0	SCUP	cm	LOG			,			
	GasThroughput	1.6	3.4	CONTR	cm^3/s	LOG	Transformation	LOG 👻			• Case 2 :	"Scale Up": Limits defined for other CONTR-factors are valid at low scale. The de
т	TensideConc	50.0	100.0	CONTR	ppm	LOG						will be set up at low scale, in a way that limits are valid at the low scale.
1C		1.0 9.8	1.0 9.8	CONST		LOG	Low Setting	20.0				"Scale Down": Limits defined for other CONTR-factors are given for the high
	Gravitation	9.8	9.8	CONST	g	LUG					Case 3 :	scale. The design will be set up for low scale, with limits calulated by DoE-DiVa compensate for the change of scale, this means that limits will be valid at the h
	DoE	-Di\	Va h	ias a			High Setting	40.0		-		scale after Scale Up.
	Con	duc	tor									
						_						
				d 😳					_	4		Schließen

DoE-DiVa's conductor is communicative

- DoE-DiVa exports x-factors and x-designs to MODDE[®]
- DoE-DiVa exports formulae for u-designs to MODDE[®] for optimization at low and high scale

	Fr	cTx	d	ncr	Q_1
RO	-9,398	-4,30	20	0,046	2,519
R1	-9,072	-4,30	20	0,053	2,411
R2	-8,800	-4,30	20	0,057	2,311
R3	-8,605	-4,30	20	0,060	2,233
R4	-8,451	-4,30	20	0,063	2,178
R5	-9,056	-4,00	20	0,062	2,478
R6	-8,800	-4,00	20	0,069	2,392
R7	-8,608	-4,00	20	0,074	2,331
		1		1	
d_C	(1	0^(- 0.17241	4*v1+((Log10	D(0.01*v3) - (- 0.172414*
q_C	(1	0^(0.068966*	v1+2.5*((Log	g10(0.01*v3)	- (- 0.17241
·	-	· · · · · · · · · · · · · · · · · · ·	c	<i>.</i>	

 d_c
 (10 (0.003900 V12.3 ((L0g10(0.01 V3) - (-0.17241

 cT_C
 (10^(v2))/1.0E-6

 ncr_C
 (10^(v6+(-0.172414*v1+((Log10(0.01*v3) - (-0.1724

 Q_1_C
 Log10(v4)+(-0.172414*v1+((Log10(0.01*v3) - (-0.1724

```
25/01/23 umes € ft
```

(c) Prof. Andreas Orth, Umesoft GmbH, Eschborn

- 2. Dimensionless eXplaining factors vs. User factors
- 3. Using DoE-DiVa for preparing simple Scale Up
- 4. Using MODDE to perform the Scale Up

SI system: Base Dimensions and Base Units

"The *International System of Units*, known by the international abbreviation *SI* in all languages and sometimes ... as the *SI system*, is the modern form of the *metric system* and the world's most widely used

system of measurement.

It is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce".

Symbol	Base Unit	Base Dimension
m	metre	length
kg	kilogram	mass
S	second	time
Α	ampere	electric current
Kel	kelvin	thermodynamic temperature
mol	mole	amount of substance
cd	candela	luminous intensity

https://en.wikipedia.org/wiki/International_System_of_Units

25/01/23 **umes ⊘ft**

(c) Prof. Andreas Orth, Umesoft GmbH, Eschborn

SI system: Derived Dimensions and Units "The system allows for an unlimited number of additional units, called *derived units*, which can always be represented as *products of powers of* the base units, possibly with a nontrivial numeric multiplier. When that multiplier is one, the unit is called a coherent derived unit." Symbol Unit **Derived Dimension** Relation m kg s A Kel mol cd 1/time(s) 1/s hertz frequency -1 mass(kg)*acceleration (m/s²) Ν newton force 1 1 -2 Pas pascal pressure force(N)/area(m²) -1 1 -2 force(N)*distance(m) 2 1 -2 J joule energy w energy(J)/time(s) 2 1 -3 watt power power(W)/electric current(A) v volt potential difference 2 1 -3 -1 С coulomb electric charge electric current(A)*time(s) 1 1 М kg/mol (!!) molar mass mass(kg)*amount of substance(mol) 1 -1 C_p J/kg-Kel specific heat capacity energy(J)/mass(kg)/Kel 2 -2 -1 https://en.wikipedia.org/wiki/International_System_of_Units umes<mark></mark>€ft 25/01/23 (c) Prof. Andreas Orth, Umesoft GmbH, Eschborn 9

Permitted non-SI units (in our words "User"-Units)

"There is a special group of units that are called "non-SI units that are accepted for use with the SI". Most of these, in order to be converted to the corresponding SI unit, require *conversion factors* that are not necessarily powers of ten."

Symbol	Non-SI "User"-Unit	Dimension	Relation to SI-Unit gradient * SI-Unit + offset	m	kg	s	A	Kel	mol	cd
min	min	time	min = 60 * s + 0			1				
rpm	rpm	frequency	1/min = 0,01666666667 * 1/s + 0			-1				
°C	°Celsius	temperature	°C = 1 * Kel + 273,15					1		
cm³ / s	ccm/sec	volume or gas flow	cm ³ /sec = 0,000001 * m ³ /s + 0	3		-1				
M [g/mol]	gr/mol	molar mass	M[g/mol] = 0,001*kg/mol + 0		1				-1	
atm	atmosphere	pressure	atm = 101325 * Pas + 0	-1	1	-2				

https://en.wikipedia.org/wiki/International_System_of_Units

25/01/23	umes <mark></mark> €ft	(c) Prof. Andreas Orth, Umesoft GmbH, Eschborn	10
----------	------------------------	--	----

Buckingham π theorem of Dimensional Analysis

"The **Buckingham** π **theorem** describes how every physically meaningful equation involving n variables can be equivalently rewritten as an equation of n – m **dimensionless parameters**, where m is the rank of the dimensional matrix. ... provides a method for computing these ... from the given variables."

pm rpm frequency 1/min = 0,01666666667 * 1/s + 0 -1 I °C °Celsius temperature °C = 1 * Kel + 273,15 1 I I	1
n^3/s ccm/sec volume or gas flow cm ³ /sec = 0,000001 * m ³ /s + 0 3 -1 2	-1
g gravity consant acceleration $acceleration (m/s^2)$ 1 -2 -1 -1	
d cm length cm = 0,01 * m 1 -5	3
c dimensionless vol/vol concentration volume(m ³)/volume(m ³) 0 0 0 1	
Fr dimensionless power number power/density/frequency³/length^5 0	
2_1 dimensionless Reynolds number area*frequency*density/viscosity 0 0 0 0	
Fr dimensionless power number power/density/frequency³/length^5 0 0 0 0	

The Similarity Principle and its Contraposition

If the state of a system can be **completely described** by the dimensionless factors,

then two manifestations of a system behave the same, if they have the same settings of the dimensionless factors (x-factors).

even if the real factors (u-factors) have different setting values.

Contraposition: Influencing factors that induce the most change in a system must be dimensionless.

Therefore: optimal experimental design, with maximal information (=variation), and with minimal experimental effort must be for dimensionless factors.

13

25/01/23 **umes☉ft**

(c) Prof. Andreas Orth, Umesoft GmbH, Eschborn

Dimensional Analysis and Similarity Principle
 Dimensionless eXplaining factors vs. User factors
 Using DoE-DiVa for preparing simple Scale Up
 Using MODDE to perform the Scale Up

Conduc	tor View Setting	s 🔹 🔤	View Des	ign [Design Diag	gn. 👻	Name	diameter	Ab	ıbr d	/			T
-	r Input VMatrix In	put	Matrix	Keep Colu	imns Res	sponses	Role Type	SCUP	- Dimer	nsion	4	1		``. 1
		•		P. I.		-	Dimension Type	LENGTH	- Select	Scale up Cas	2 L		1	4
Key d	Name diameter	Low 20.0	High 40.0	Role CONTR	Unit	LOG								
q	GasThroughput	1.12	4.3			LOG	Unit	cm 👻 🔮	Case		endence": Limits de e set up at low scal			
cT	TensideConc	50.0	100.0	CONTR	ppm	LOG				design will be	e set up at iow stal	c, a way uidt ii	and are valid at DC	an states.
MC	MaterialConstant	1.0	1.0	CONST	SI	LOG	Transformation	LOG 👻		//				
g	Gravitation	9.8	9.8	CONST	g	LOG			Case 2		imits defined for ot at low scale, in a v			
							Low Setting	20.0		will be set up	at iow scale, iii a v	wy mar minis are	a vana at the low st	ure.
							5			"Scale Down"	": Limits defined for	other CONTR-fa	ctors are given for	the high
							111 1 4 11	40.0	Case :	3 : scale. The des	sign will be set up f	or low scale, with	limits calculated b	y DoE-DiVa to
							High Setting	40.0		scale after Sc	for the change of s	cale, this means t	nat limits will be v	alid at the high

Info, **T – transformation as a matrix,** this **T** is easily invertible for fixed *d = low or high*

Fact	or Input	latrix	Input	VMatrix Keep Columns Responses Settings Design Variation Generate Design
Rela	yed VMatri	x		0
	А	в	с	
1		Fr	cT_x	
2	d	-5	0	
3	q	2	0	
4	сT	0	1	
5	МС	0	0	
6	q	-1	0	

						2
	1/0.4-4	rix Keep Colu	imns Responses	Settings Desig	n Variation	
Factor Input	VIVIAL	TIX Reep Colu	inns Responses	/ settings / Desig	In variation / Generate Design	
Select Dimension-less fa	ctor(s)	to Keep			0	
Fr Fr						
✓ cT_x	V	Matrix : Correla	tion			
	_					_
		Α	В	С		
		#	Fr	cTx		
	1					
	1	q	2	0		
	-	q cT	2 0	0		
	2					

luct	or Vie	w Settin	igs 💌	View D	Design		z-respons				
									-		×
ctor	Input	VMatrix	Input	VMatrix	Keep Columns	Responses Settings D	asign Variation	Name	n_crit	Abbr	ncr
ine	Z-Resp	oonse(s)					Dimension Type	REACTION_RATE1 -	Dimension	1
y	Name	Low	High	Unit	Transformation	Dimension		Unit	1/s • 🕑 🕇	meter	0
	n_crit	1.0	2.0	1/s	LOG	REACTION_RATE1				kg	0
								Transformation	LOG 👻	sec	-1
								Min	1.0		
								Target	1.5	Kel	0
										Mol	0
								Max	2.0	Amp	0
										Cand	0

				p 5: define y-response(s)		
Con	ductor	View Settir	igs 💌 V	ew Design Diagn. V		
Des					x	
1 2 3 4 5 6 7	Desi Vm	A	gs u-Setti B PI4_ncr	1 PI4_ncr 2 Q_1 1	ancel Adjust	
8	2	d	3			
9 10	4	q cT	0	Suggest		
11	5	мс	0	Import		
	6 7	g ncr	0	Edit Adjust		
		25/01/2	3	(c) Prof. Andreas Orth, Umesoft GmbH, Eschborn	28	

Vmat	rix x-Setti	ngs u-Setting	ys VRes W	res y-respon	nse(s)			
#	Weight	Outer Low	User Low	Inner Low	Mean	Inner High	User High	Outer Hig
Fr	1.0	-9.08814	-9.08814	-9.08814	-8.76078	-8.43342	-8.43342	-8.43342
cT_x	1.0	-4.30103	-4.30103	-4.30103	-4.15052	-4.0	-4.0	-4.0
MC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
g	0.0	0.991226	0.991226	0.991226	0.991226	0.991226	0.991226	0.991226
d_su	0.0	-0.69897	-0.69897	-0.69897	-0.69897	-0.69897	-0.69897	-0.69897
Transfori LOG back-trar		nner Out nbetween User		Setting		Generate x-Set		Abbrechen

Г

Vmat	rix x-Setti	ngs u-Setting	s VRes W	res y-respon	nse(s)	+	Lune man u _{2 high}
#	Weight	Outer Low	User Low	Inner Low	Mean	$\langle \langle $	
Fr	1.0	-9.08814	-9.08814	-9.08814	-8.76078		thine and the transform
cT_x	1.0	-4.30103	-4.30103	-4.30103	-4.15052	X	U _{2 low} +1 +100
MC	0.0	0.0	0.0	0.0	0.0		
g	0.0	0.991226	0.991226	0.991226	0.991226	0.991226	0.991
d_su	0.0	-0.69897	-0.69897	-0.69897	-0.69897	-0.69897	-0.698
Transfori LOG back-trar	nsform	nner Outw nbetween User example i		Setting		Generate x-S	iettings

x-D	esiq	nan	d u-j	form	ulae	exported to MODDE				
	\DoEDiVa\program			-	- 🗆 X					
Datei Start	Freigeben Ansic	ht			d C	(10^(- 0.172414*v1+((Log10(0.01*v3) - (- 0.172414*v1 - 0				
← → ∽ ↑]	« program » d	defoamer22	~	ර ු defoam	_	(10^(0.0689655*v1+2.5*((Log10(0.01*v3) - (- 0.172414*v2				
GreenSa	Install	^	Name		cT_C	(10^(v2))/1.0E-6				
Software	apetern				ncr_C	10^(v6+(- 0.172414*v1+((Log10(0.01*v3) - (- 0.172414*v1 -				
wurfsend	ungen			Project23-Design.csv	Q_1_C	Log10(v4)+(- 0.172414*v1+((Log10(0.01*v3) - (- 0.172414				
basf-doe.z	5			Project23-Formulae.c Project23.diva	sv					
doediva-0.	20.09-adjusterFix.zi	p v		rojecizo.uiva	>	×				
36 Elemente 1 E	ement ausgewählt					Files saved : CONFIRMATION				
	Fr	cTx	d	ncr	Q_1					
RO	-9,0720008	-4,30103	20	0,0525063	2,4111137					
R1	-8,7997663	-4,30103	20	0,0570879	2,311329	Files saved				
R2	-8,6051676	-4,30103	20	0,0595826	2,2326052					
R3	-8,4514876	-4,30103	20	0,0626672	2,177686					
R4	-9,0561599	-4	20	0,0624407	2,4784493	files ([defoamerProject23-Formulae.csv,				
R5	-8,7997663	-4	20	0,0687186	2,3918596	defoamerProject23-Design.csv]) saved successfully into				
R6	-8,6082865	-4	20	0,0744702	2,3310275	D:\DoEDiVa\program\defoamer22				
R7	-8,4411163	-4	20	0,0796169	2,2764651					
R8	-8,7292189	-4,150515	20	0,0525063	2,177686	OK Abb				
R9	-8.7292189	-4.150515	40	0.0796169	2.4784493					

		Design Wizard							
ack	Nou	Data speci	fication		Res	ponses		>	Factors
	New	The second second	في و واو او و						
		Format spre				101			
	Experimental design Start the classical experimental design setup	Check that the correct c	olumnis for ta						-
	from here.	Header row	1	Exp name	2	3	4 d	Response	Response
		Abbreviation row	2	RO	Fr -9,39794	cT_x -4,30103	a 20	ncr 0.0462388	Q_1 2,51888
	Using existing design	Exp name	2	RU R1	-9,39794	-4,30103	20	0.0525063	2,51000
		Run order	4	R2	-8,79977	-4,30103	20	0.0570879	2,4111
		Factors	5	R3	-8.60517	-4,30103	20	0.0595826	2,23261
	Paste data Paste data into a spreadsheet		6	R4	-8.45149	-4.30103	20	0.0626672	2,17769
	• • • • • • • • • • • • • • • • • • • •	Responses	7	R5	-9,05616	-4	20	0,0624407	2,47845
		Include row	8	R6	-8,79977	-4	20	0,0687186	2,39186
	🔯 Import external design	Exclude	9	R7	-8,60829	-4	20	0,0744702	2,33103
	Import external design Import a design saved in another file format.		10	R8	-8,44112	-4	20	0,0796169	2,27647
			11	R9	-8,20357	-4	20	0,0917907	2,21948
	Complement design		12	R10	-8,74353	-4,15052	20	0,0462388	2,17769
	Add new experiments to resolve interactions		13	R11	-8,74353	-4,15052	40	0,0917907	2,51888

Ste	p 9f: Pr	enar	o the	> W	orl	kshi	eet	(ob	5-CI	olu	mn)
	lefoamerProject22-Design.csv* - I	-			•			(
e Home [Design Worksheet Analy	ze Predict V	iew Tools										
	A Reference mixture abc Generators	Design matrix E Design summary Confoundings Show	Candidate Nev set desig D-Optin	v Onion					olled se va		or, n	cr_ob	S
Factors			- 🗆 ×	Worksheet									
Name Abbre	eviation Units Type	Use	Settings	1	2	3	4	5	6	7	8	9	10
Fr Fr	Quantitativ	e 🗸 Controlled 🗸	0 200 to -8,204	Exp No	Exp Name	Run Order	Incl/Excl	Fr	cT_x	d	ncr_obs	ncr	Q_1
cT_x cT_	Quantitativ	controlled 🗸	-4,301 to -4	2	R1	11	Incl 🗸	-9,072	-4,30103	20	0,0525063	0,0525063	2,4111
d d	Quantitativ	e 🗸 Controlled 🗸	20 to 40	3	R2	4	Incl 🗸	-8,79977	-4,30103	20	0,0570879	0,0570879	2,3113
ncr_obs nc2	Quantitativ	e 🗸 Uncontrolled 🗸		4	R3	9	Incl 🗸	-8,60517	-4,30103	20	0,0595826	0,0595826	2,2326
Add			2 X	5	R4	1	Incl 🗸	-8,45149	-4,30103	20	0,0626672	0,0626672	2,1776
	Factor Definition		? ×		R5	-	Incl 🗸	-9,05616	-4	20	0,0624407	0,0624407	2,4784
	Factor name: ncr_obs	Units:			R6		Incl 🗸	-8,79977	-4	20	0,0687186	0,0687186	2,3918
	Abbreviation: nc2			-	R7		Incl 🗸	-8,60829	-4	20	0,0744702	0,0744702	2,3310
Abbreviation. The					R8		Incl 🗸	-8,44112	-4	20	0,0796169	0,0796169	2,2764
		R9		Incl 🗸	-8,20357	-4	20	0,0917907	0,0917907	2,2194			
		R10 R11		Excl ~ Excl ~	Exclu	ude th	ese t	wo ro	WS 388	2,1776 2,5188			
	Quantitative Quantitative multilevel Oualitative												
25/01/2						oft GmbH. E							

Step 9ff: Prepare the worksheet (u-T-1ransforms) ne d C Units: Responses d_C Abbre Name Abbreviation Units Type ettings Power Transform Scaling 1 ncr ncr Regular ar Derived 0 Dor se type: 2 Q 1 Q_1 Regular 0 3 d C d C Derived: (10^(- 0.172414*v1+((Log10(0.01*v3) - (- 0.1 Derived: (10^(0.068966*v1+2.5*((Log10(0.01*v3) - (- 0 4 q_C q_C Ob ~ () 5 cT_C cT2 Derived: (10^(v2))/1.0E-6 Objective ~ () 6 ncr_C nc2 Derived: (10^(v6+(- 0.172414*v1+((Log10(0.01*v3) - (7 Q_1_0 Q_2 Derived: Log10(v4)+(- 0.172414*v1+((Log10(0.01*v3) + Add. OK Can Add "*derived responses*" for the u-factors: *d_C, q_C, cT_C*, then add "derived responses" for the responses, ncr_C, Q_1_C, using the formulae that the DoE-DiVa provided. < 25/01/23 (c) Prof. Andreas Orth, Umesoft GmbH, Eschborn 39

Step 9fff: Check the worksheet (u-T-1ransforms) Ш Units Predicted min Pre Name Objective Abb Condition Regular Required 🐱 Inside ncr Q_1 Required 🖌 Inside Q_1 Regular 2 d_C d_C Derived: (10^(- 0.172414*v1+((Log10(0.01*v3) - (- 0.172414*v1 - 0.17241 Observed • Predicted • R2 q_C cT_C Q2 Derived: (10^(0.068966*v1+2.5*((Log10(0.01*v3) - (- 0.172414*v1 - 0.1724 Observed v Predicted v q_(4 cT2 5 Worksheet 6 ncr_C nc2 10 11 12 13 14 15 3 Q_1_C Q_; Exp No Exp Name Run Order Incl/Excl Fr сТх ncr_obs Q1 d C q_C cT_C ncr C Q 1 C ncr 1 R0 7 Incl -9.39794 -4,30103 20 0.0462388 0.0462388 2,51888 20 1,11998 50 0.0454014 2,51889 2 R1 2 Incl -9,072 -4,30103 20 0,0525063 0,0525063 2,41111 20 1,62997 50 0,0512287 2,41112 3 R2 9 Incl -8,79977 -4,30103 20 0,0570879 0.0570879 2,31133 2,22995 50 0,0566649 2,31134 20 4 R3 10 Incl -8,60517 -4,30103 0,0595826 0,0595826 2,23261 2,78994 50 0,0609012 2,23262 20 20 Double-click or p 5 R4 11 Incl -8,45149 -4,30103 20 0,0626672 0,0626672 2,17769 3,32993 50 0,0644693 2,1777 20 6 R5 -9,05616 0,0624407 0,0624407 2,47845 1,65997 100 0,0636451 2,47846 6 Incl 20 20 0 7 R6 8 Incl -8,79977 20 0,0687186 0,0687186 2,39186 2,22995 100 0,0699869 2,39187 8 R7 3 Incl 2,33104 9 9 R8 1 Ind Remove the last two rows from the worksheet, 2,27648 10 10 R9 4 Inc 2,21949 they were needed for MODDE to not set **d** to constant. 11 11 R10 12 Excl 12 12 R11 25/01/23 (c) Prof. Andreas Orth, Umesoft GmbH, Eschborn 40

C	tor	n 1	Charlen		60	ЛЛ	OD		® D	Iro	dic	tin	n c	ot			
J	nch	ЛТ		. 0	SC	Ινι		νL	Γ	160	IL		11 3	Cι			
File	e Hom	e Design	Worksh	eet Analy:	e Predio	t View	Tools	Optimizer									~ ()
	8	2	۱				🔺 🔯	1							_		_
	lictions Scatte		Factor Cor	ntour Sweet	Design Desir	ability Opt	imizer Setpo	int JU	st c	onv	/nas	ste.	Fr.	сТ. с	l an	d ncr	ot
		plots *	effects	✓ spot * s	pace*	•	explorat	tion *		~~//	10 0.0	,,					
S	Spreadsheet		li li	nterpretation			Optimize	n	r o	bs	an	d	n	r C	shr	ould n	nata
Pr	edictions				Predictio	on Spreadshe	et ×			05	un	u		<u></u>	5110		1010
0	pen the predic	tion spreadsh	eet and pred	ict responses.	5	6		8	9	10	11	12	13	14	15	16	^
	Fr	cT_x	d	ncr_obs 🧹		Lower	Upper	Q_1	Lower	Upper	d_C	q_C	cT_C	ncr_C	Q_1_C	Desirability Requ	ired res
1	-9,95246	-4,30103	30	0,0318179	0,0318179	0,0318179	0,0318179	2,72531	2,70018	2,75045	30	1,62996	50	0,032072	2,72186	0	
2	-9,68413	-4,30103	30	0,0337325	0,0337325	0,0337325	0,0337325	2,62783	2,60827	2,64738	30	2,21995	50	0,0348983	2,61307	0	
3	-9,49817	-4,30103	30	0,0353054	0,0353054	0,0353054	0,0353054	2,56026	2,54443	2,5761	30	2,74994	50	0,0370017	2,53988	0	
4	-9,34244	-4,30103	30	0,0394306	0,0394306	0,0394306	0,0394306	2,50369	2,49078	2,51659	30	3,28993	50	0,0388604	2,51001	0	
5	-9,0919	-4,30103	30	0,0432432	0,0432432	0,0432432	0,0432432	2,41266	2,40369	2,42164	30	4,38991	50	0,0420487	2,42483	0	
6	-8,89611	-4,30103	30	0,0465788	0,0465788	0,0465788	0,0465788	2,34153	2,33404	2,34901	30	5,4999	50	0,0447214	2,3592	0	
7	-10,3167	-4,30103	40	0,0257311	0,0257311	0,0257311	0,0257311	2,85764	2,82474	2,89054	40	2,19995	50	0,024767	2,87423	0	
8	-10,1041	-4,30103	40	0,0273878	0,0273878	0,0273878	0,0273878	2,78041	2,75206	2,80876	40	2,80994	50	0,0264806	2,79504	0	
9	-9,96978	-4,30103	40	0,028511	0,028511	0,028511	0,028511	2,73161	2,70611	2,7571	40	3,27992	50	0,0276242	2,74533	0	
10	-9,6855	-4,30103	40	0,0323149	0,0323149	0,0323149	0,0323149	2,62832	2,60874	2,64791	40	4,5499	50	0,0302097	2,65758	0	
11	-9,59666	-4,30103	40	0,034653	0,034653	0,034653	0,034653	2,59605	2,57826	2,61383	40	5,03989	50	0,0310663	2,6435	0	
12	-9,96318	-4	30	0,0381663	0,0381663	0,0381663	0,0381663	2,75111	2,71614	2,78607	30	1,60996	100	0,0336171	2,80623	0	
13	-9,68805	-4	30	0,0408523	0,0408523	0,0408523	0,0408523	2,66667	2,63852	2,69483	30	2,20995	100	0,0379921	2,6982	0	
14	-9,50769	-4	30	0,0446766	0,0446766	0,0446766	0,0446766	2,61133	2,58757	2,63509	30	2,71994	100	0,0411645	2,64689	0	
15	-9,33718	-4	30	0,0482239	0,0482239	0,0482239	0,0482239	2,559	2,53931	2,57868	30	3,30993	100	0,0444072	2,59481	0	
16	-9,08011	-4	30	0,0512571	0,0512571	0,0512571	0,0512571	2,48011	2,46626	2,49396	30	4,44991	100	0,0497849	2,49277	0	
17	-10.5007	-4	40	0.0327357	0.0327357	0.0327357	0.0327357	2,91606	2,86763	2,96449	40	1,77996	100	0.0229239	3,07079	0	

