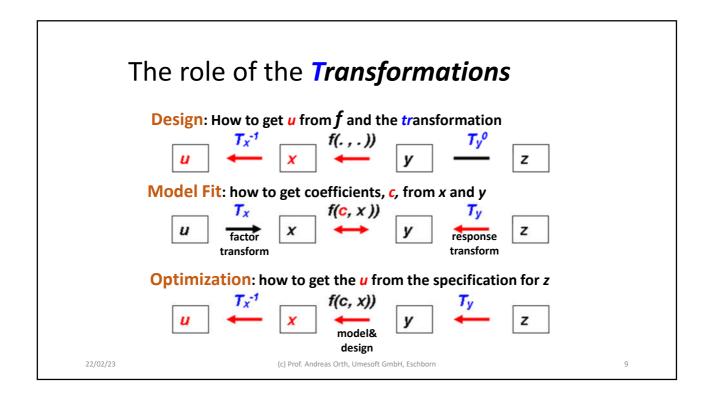
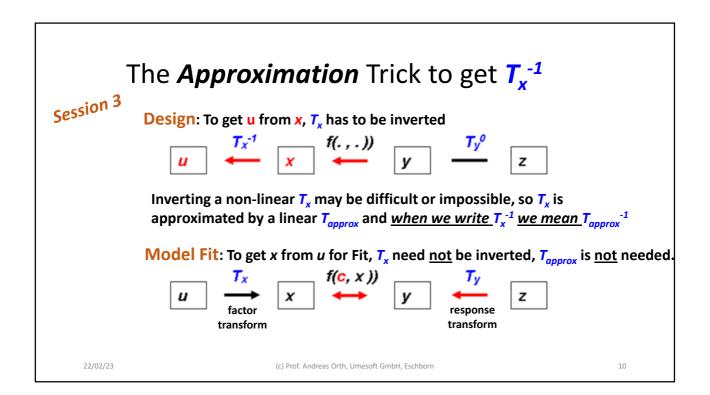
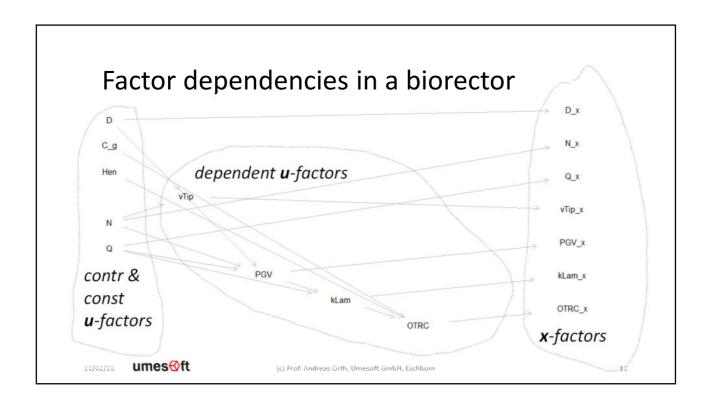
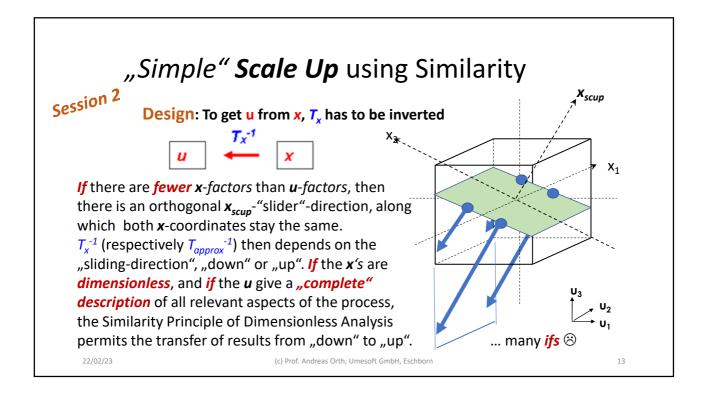
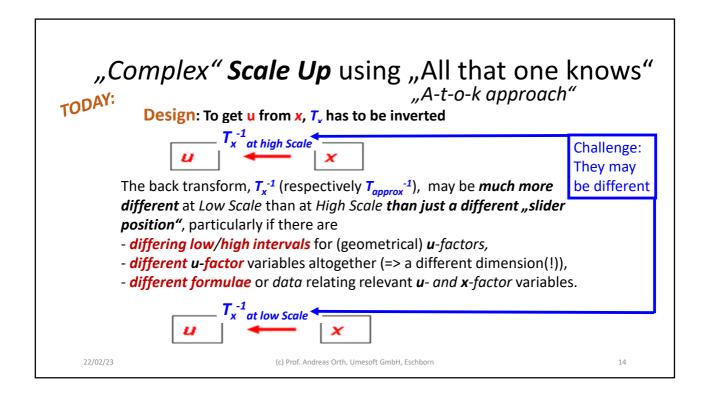

	Help														
8	View Settings * View Desir		Design D	iaan 💌								10			
1	1				Name	impelle	rSpeed			Abbr	N				
Factor	Input VMatrix Input Relay Inpu	ut VMa	atrix Ke	ep Column						Dimension		Unit			×
ofine	Factors			eseren and	Role Type	CONTR	•	NO_SCUP	1	Dimension		Unit View			
enne	raciois									meter	0]			
Key	Name	Low	High	Role	Dimension Type	NUMBE	R REVOL	UTIONS				Unit Name	rpm		
>	impellerDiam	0.12	0.2	CONTR						kg	0				
c_g	gasVolumeConcentration	100.0	100.0	CONST				•				Offset	0.0		
Hen	HenrySolubilityConst	0.031	0.031	CONST	Unit	rpm		۲	+	sec	-1	Offset	0.0		
Tip	tipSpeed	1.0	1.0	CDEP						Kel	0				
N	🖉 DoE-DiVa ha	is a	i.0	CONTR	Transformation	LOG				Kel	U	Gradient	0.0166666667		
2			D	CONTR						Mol	0				
PGV	Conductor,		0	CDEP	Low Setting	65						-	o	Abbre	chen
OTRC	not a wizard	0	0	CDEP	Lon Setting	0.5				Amp	0			Latertier	Control of the
ReN	ReynoldsNumber	1.0	1.0	CDEP											
Reiv	Reynoldsnumber	1.0	1.0	CUEP	High Setting	15.0				Cand	0				



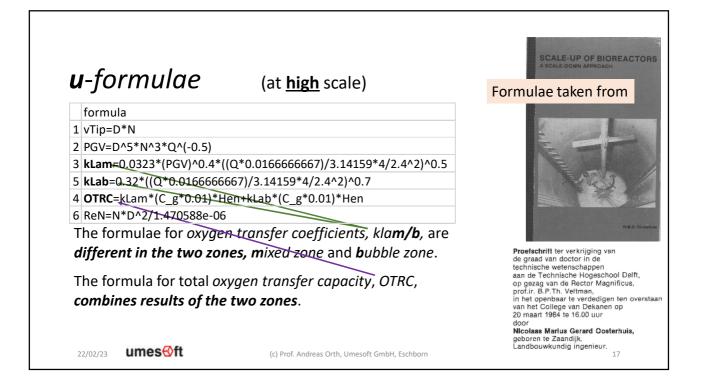


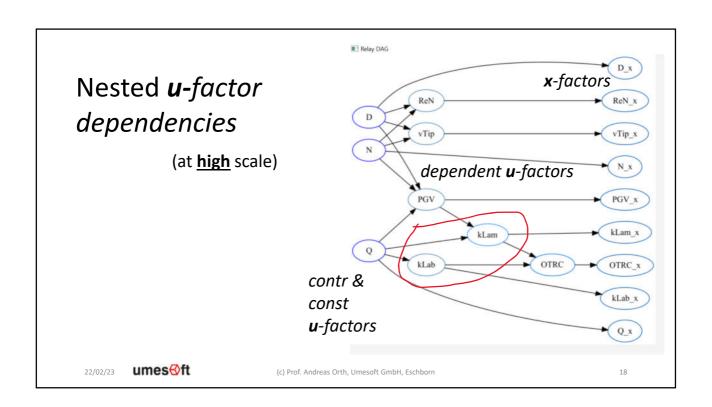

- 2. Bioreactor at High and Low Scale
- 3. Preparing Scale Down using DoE-DiVa
- 4. Performing Scale Down using MODDE®

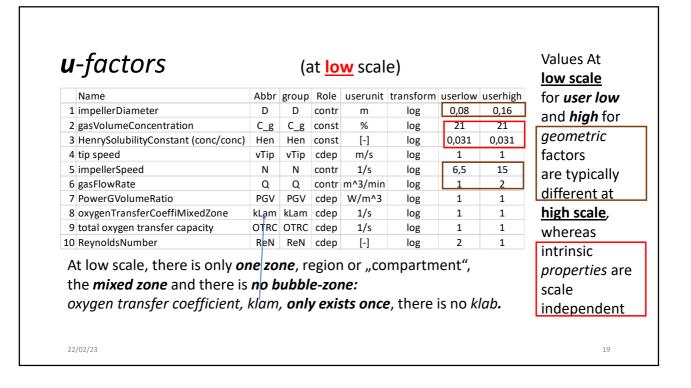


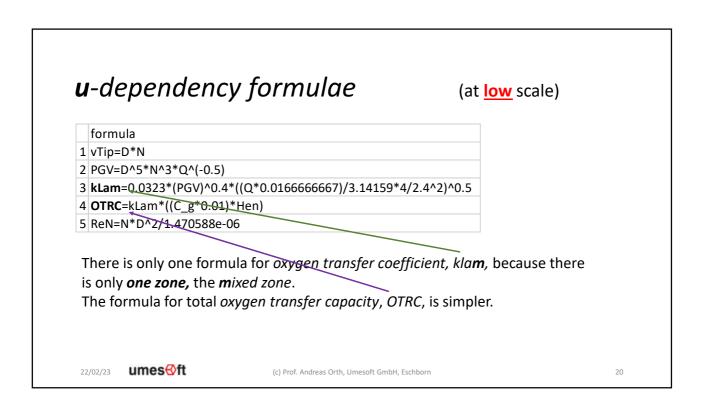


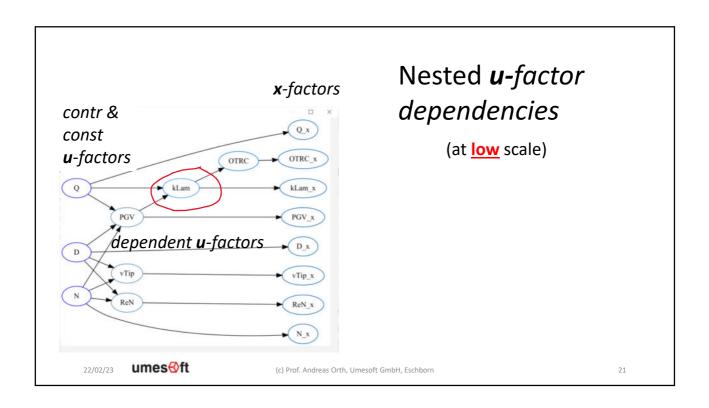
Different types of *factor dependencies* - Quotients and Products of controlled (or constant) u-factors can be directly used as xfactors, **HOWEVER** it may be advisable – in the following situations – to first introduce *dependent u-factors*: - *Nested formulae*: *Oxygen transfer <u>capacity</u>*, **OTRC**, depends on *oxygen transfer* coefficient, kLa, which again depends on power to volume ratio, PGV, and gas flow rate, Q. - Non-linear formulae: Oxygen transfer capacity, OTRC, is the sum of products of kLa's and concentration gradients. These will be **approximated** when determining **T**_{approx} and Tapprox⁻¹ - **Data tables** from prior *experimental* or *simulation* runs are *available*, but not as forumulae, typically simulation results for the high scale and experimental results from the low scale. umes❸ft 22/02/23 11 (c) Prof. Andreas Orth, Umesoft GmbH, Eschborn

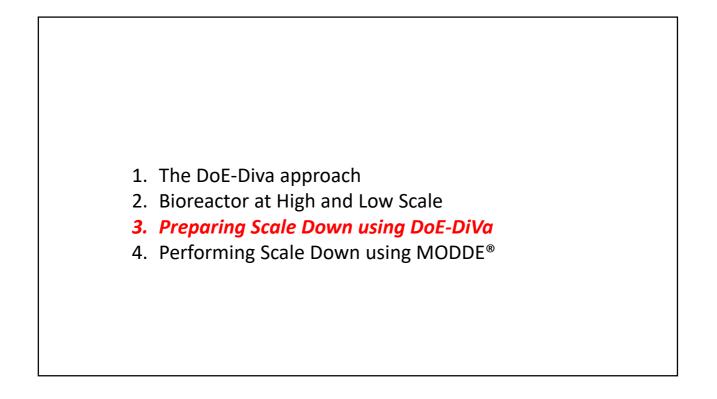


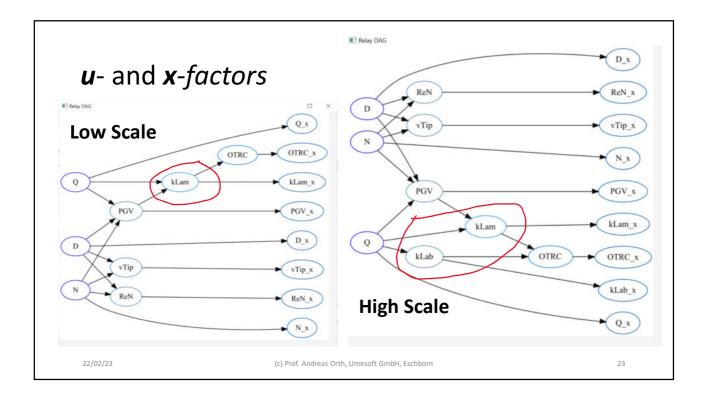


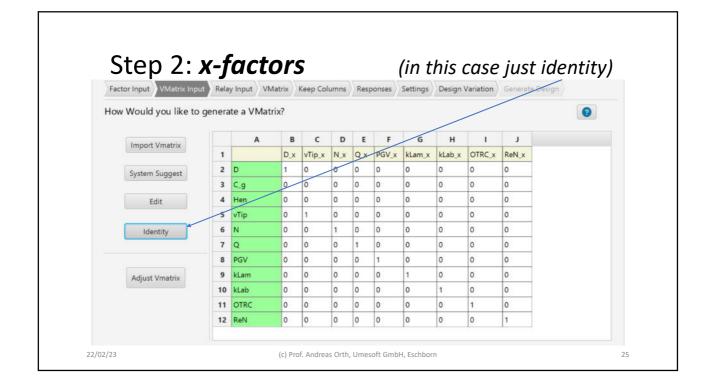

2. Bioreactor at High and Low Scale

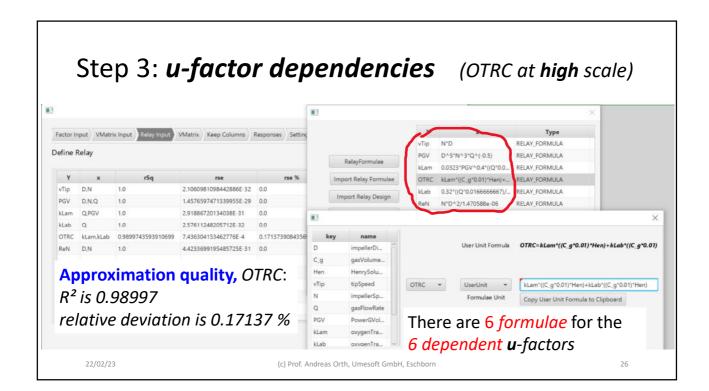

- 3. Preparing Scale Down using DoE-DiVa
- 4. Performing Scale Down using MODDE[®]

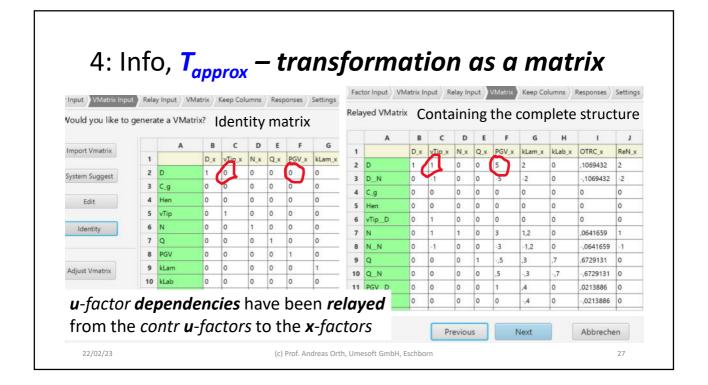

u -factors		(at <u>hig</u>	<u>h</u> scal	e)				<u>high scale</u> for user low
Name	Abbr	group	Role	userunit	transform	userlow	userhigh	and <i>high</i> for
1 impellerDiameter	D	D	contr	m	log	0,4	0,8	_
2 gasVolumeConcentration	C_g	C_g	const	%	log	21	21	geometric
3 HenrySolubilityConstant (conc/conc)	Hen	Hen	const	[-]	log	0,031	0,031	factors are
4 tip speed	vTip	vTip	cdep	m/s	log	1	1	r
5 impellerSpeed	N	N	contr	1/s	log	1,3	2,6	typically
6 gasFlowRate	Q	Q	contr	m^3/min	log	10	20	different at
7 PowerGVolumeRatio	PGV	PGV	cdep	W/m^3	log	1	1	uijjerent at
8 oxygenTransferCoeffiMixedZone	kLam	kLam	cdep	1/s	log	0,0006	0,006	low scale,
9 oxygenTransferCoeffiBubbleZone	kLab	kLab	cdep	1/s	log	1	1	
10 total oxygen transfer capacity	OTRC	OTRC	cdep	1/s	log	1	1	whereas
11 ReynoldsNumber	ReN	ReN	cdep	[-]	log	1	1	intinsic
At high scale, there mixed zone and bui	bble-zo							properties ar scale
different in the two) zones							independent

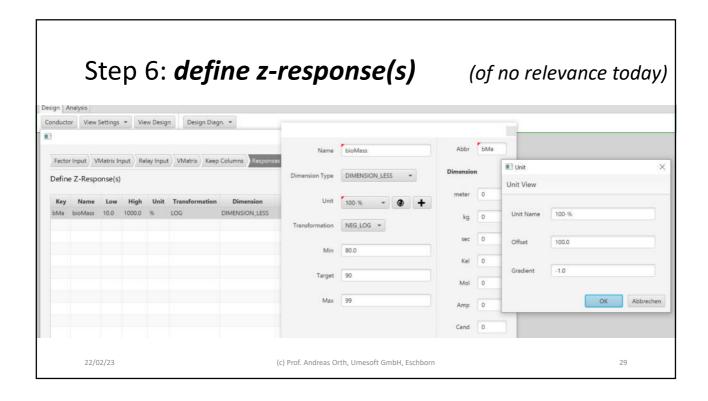


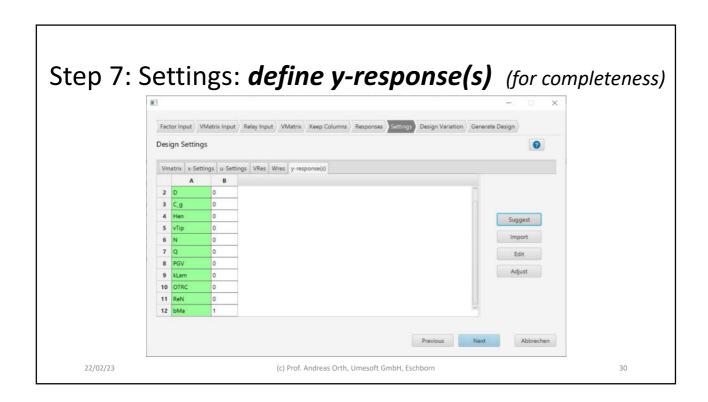




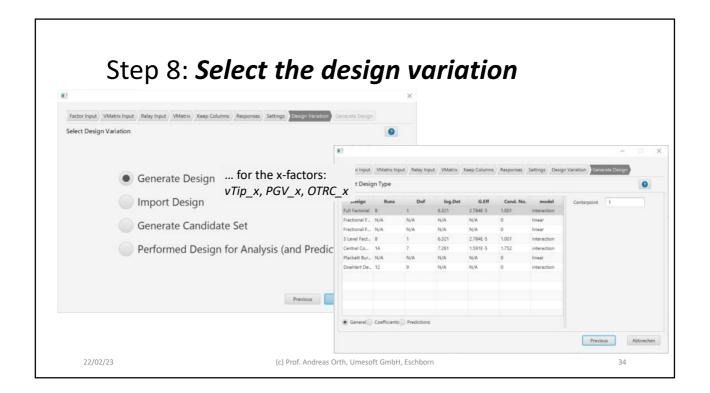





St	ep 1: u-fac t	tors	S			(hig	i h scale fi	rst)
Factor	Input VMatrix Input Relay Input	VMatr	ix Kee	ep Columns	Response	s Settings De	sign Variation Gene	rate Design
Define	Factors							0
Key	Name	Low	High	Role	Unit	Transformation	Dimension	1
D	impellerDiam	0.4	0.8	CONTR	m	LOG	LENGTH	Thoma and 2
C_g	gasVolumeConcentration	21.0	21.0	CONST	%	LOG	DIMENSION_LESS	There are 3
Hen	HenrySolubilityConst	0.031	0.031	CONST	SI	LOG	DIMENSION_LESS	controlled
vTip	tipSpeed	1.0	1.0	CDEP	m/s	LOG	SPEED	u -factors
N	impellerSpeed	1.3	2.6	CONTR	revpm	LOG	NUMBER_OF_REVO	u juccors
Q	gasFlowRate	10.0	20.0	CONTR	m^3/min	LOG	VOLUME_FLOW	
PGV	PowerGVolumeRatio	1.0	1.0	CDEP	W/m^3	LOG	POWER DENSITY	There are 6
kLam	oxygenTransferCoeffiMixedZone	6.0E-4	0.006	CDEP	1/s	LOG	REACTION_RATE1	
kLab	oxygenTransferCoeffiBubbleZone	1.0	1.0	CDEP	SI	LOG	REACTION_RATE1	dependent
OTRC	totalOxygenTransferCapacity	1.0	1.0	CDEP	1/s	LOG	REACTION_RATE1	u -factors
ReN	ReynoldsNumber	1.0	1.0	CDEP	SI	LOG	DIMENSION LESS	,

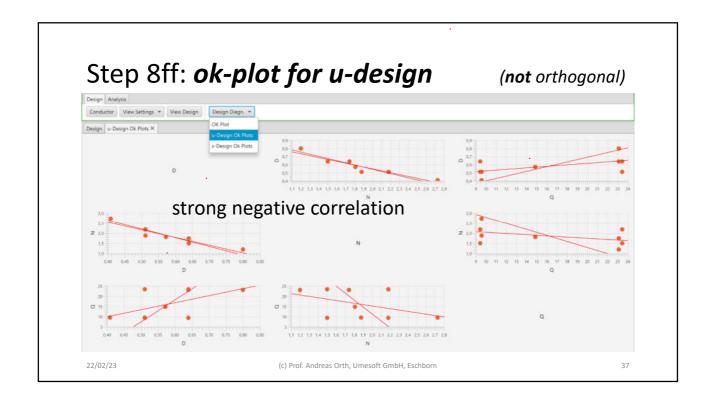


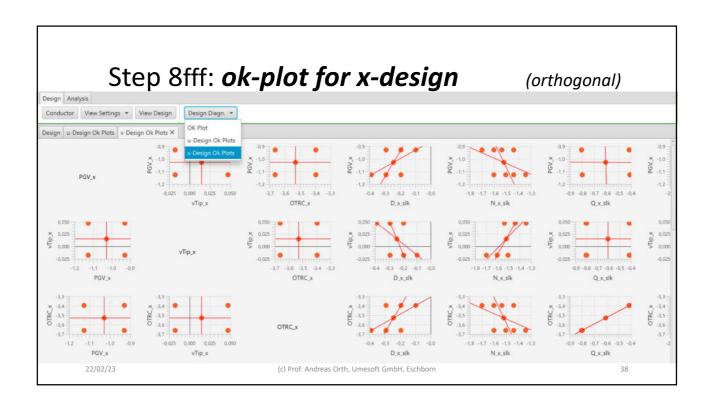
Contract to the second second									
Factor Input VMatrix Input	Relay I	nput VMatri	x Keep Colum	nns Response	s Settings	Design Variation	Generate	Design	
Select Dimension-less fac	tor(s) t	о Кеер						6	
	_								
D_x	1.0		1						
vTip_x	VN	Aatrix : Correlat	tion						
N_x		с	D	E	F	G	н	1	
Qx	1	vTip x	N x	Qx	PGV x	kLam x	kLab x	OTRC x	F
✓ PGV_x	2	1	0	0	5	2	0	.1069432	
kLam_x			1		100				-
kLab_x	3			0	3	1,2	0	,0641659	1
KEUD_A	4	0	0	1	-,5	,3	,7	,6729131	(
OTRC_X	1000								

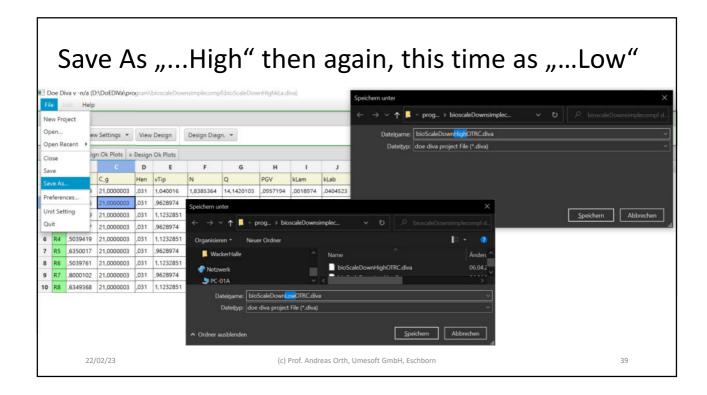

٦

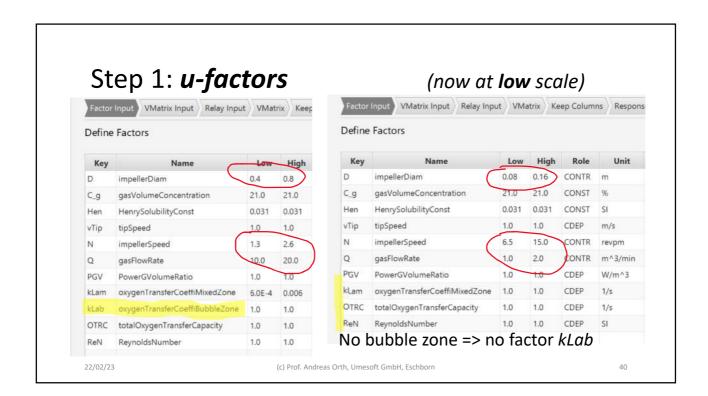
A	В	ttings \	D	y-respo	F		A	tings u-Settin	c	D	E	response(s	G	н	
	vTip_x	PGV_x	OTRC_x	D_N	Cq			D	DN	C_g	Hen	vTip D	N	N N	0
D	1	5	,1069432	0	0	c	vTip_x	-1,5	0	0	0	0	2,5	0	,00000
D_N	-1	-5	-,1069432	1	0	C	PGV_x	,492178	0	0	0	0	-,492178	0	-,03128
C_g	0	0	0	0	1	C	OTRC_x	,365707	0	0	0	0	-,365707	0	1,4628
Hen	0	0	0	0	0	1	D_N	1	1	0	0	0	0	0	0
vTip_D	1	0	0	0	0	C	C_g	0	0	1	0	0	0	0	0
N	1	3	,0641659	0	0	C	Hen	0	0	0	1	0	0	0	0
N_N	-1	-3	-,0641659	0	0	C	vTipD	1,5	0	0	0	1	-2,5	0	-,0000
Q	0	-,5	,6729131	0	0	C	NN	0	0	0	0	0	1	1	0
Q_N	0	,5	-,6729131	0	0	C	Q_N	0	0	0	0	0	0	0	1

Г

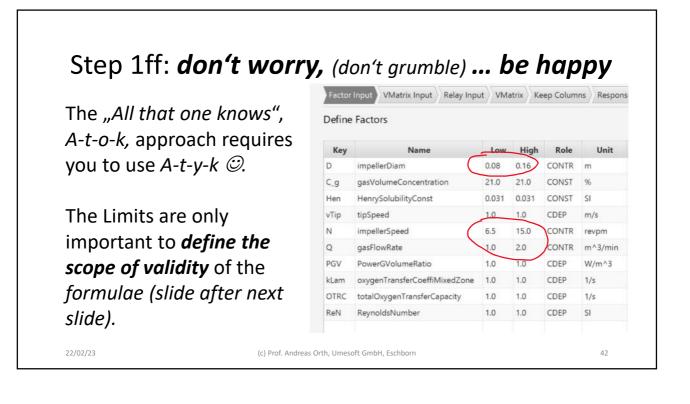

Vmatrix	x-Settinas	u-Settings	VRes Wres	y-response(s	(2					
#	Weight	Outer Low		Inner Low	Mean	Inner High	User High	Outer High		
vTip_x	1.0	0.520001	0.960075	0.960075	1.03454	1.11479	1.11479	2.08		ř
PGV_x	1.0	0.00478751	0.074739	0.0747395	0.0938469	0.117842	0.117842	1.73327		
OTRC_x	1.0	2.13644E-4	2.17856E-4	2.17856E-4	2.95972E-4	4.02087E-4	4.02087E-4	3.83504E-4		
D_N	0.0	0.571601	0.571601	0.571601	0.571601	0.571601	0.571601	0.571601		
C_g	0.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0		
Hen	0.0	0.0309999	0.0309999	0.0309999	0.0309999	0.0309999	0.0309999	0.0309999		
vTip_D	0.0	1.03454	1.03454	1.03454	1.03454	1.03454	1.03454	1.03454		
N N	0.0	1.80989	1.80989	1.80989	1.80989	1.80989	1.80989	1.80989		
Transfor	mation	Use								
LOG		Inner	Outer		Setting			Generate x-Sett	ings	

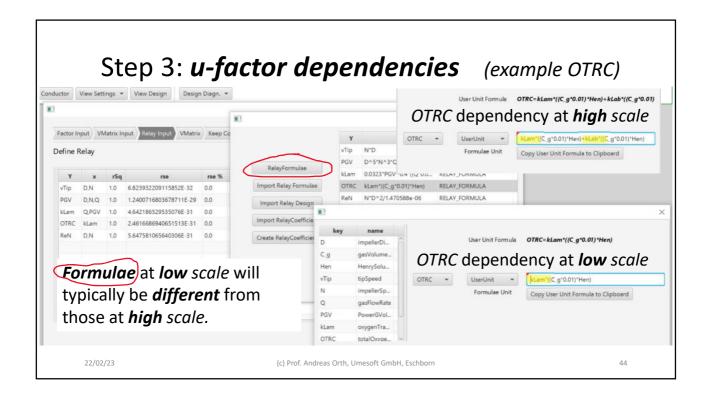

7 ft	ff: Se	tting				· 3.
		LILLE	gs: x-	sett	ings	U2 trate withigh the the
ettings	u-Settings \	/Res Wres	y-response(s	5]		Un statement
Veight	Outer Low	User Low	Inner Low	Mean	Inner High	
ο.	0.520001	0.960075	0.960075	1.03454	1.11479	1.1
D	0.00478751	0.074739	0.0747395	0.0938469	0.117842	1.1 +2.met +2.overlow
0	2.13644E-4	2.17856E-4	2.17856E-4	2.95972E-4	4.02087E-4	4.0; U _{2 low}
0	0.571601	0.571601	0.571601	0.571601	0.571601	0.5
D	21.0	21.0	21.0	21.0	21.0	21.0
0	0.0300000	0.0200000	0.0200000	0.000000	0.000000	0.000000 0.000000
D	1 Here	inner li	i mits ar	nd	User li	<i>imits</i> can always be chosen 📃
0	¹ outer	limits	are dif j	ferent	inbetw	veen the two.
ion U	se					
m	Inner Inbetween	Outer User		Setting		Generate x-Settings
	Veight) .))))))))))	Veight Outer Low 0 0.520001 0 0.00478751 2.13644E-4 0 0 0.571601 0 21.0 0 1. Here 0 1. Outer 0 1. Inner	Veight Outer Low User Low 0.520001 0.960075 0.00478751 0.074739 2.13644E-4 2.17856E-4 0.571601 0.571601 0.100 21.0 0.100 0.0300000 1. Here inner Innet 0.1. Outer limits 0.1. Outer	Veight Outer Low User Low Inner Low 0.520001 0.960075 0.960075 0.00478751 0.074739 0.0747395 2.13644E-4 2.17856E-4 2.17856E-4 0.571601 0.571601 0.571601 0.00478751 0.0747395 0.0747395 1.0 0.571601 0.571601 0.10 0.571601 0.571601 0.10 0.300000 0.0300000 1. Here inner limits are diff 0.1 Outer Outer	0.520001 0.960075 0.960075 1.03454 0.00478751 0.0747395 0.0938469 2.13644E-4 2.17856E-4 2.17856E-4 2.95972E-4 0.0571601 0.571601 0.571601 0.571601 0.21.0 21.0 21.0 21.0 0.0047879 0.030000 0.030000 0.030000 1. Here inner limits and 1. outer limits are different 0.00 0.0000 0.00000 1. outer limits are different	Veight Outer Low User Low Inner Low Mean Inner High 0 0.520001 0.960075 0.960075 1.03454 1.11479 0 0.00478751 0.074739 0.0747395 0.0938469 0.117842 0 2.13644E-4 2.17856E-4 2.17856E-4 2.95972E-4 4.02097E-4 0 0.571601 0.571601 0.571601 0.571601 0.571601 0 21.0 21.0 21.0 21.0 21.0 21.0 1 Here inner limits and 0.0300000 0.0300000 0.0300000 0.0300000 0.0300000 0.0300000 1 Outer limits are different inbetv on Use Setting Setting

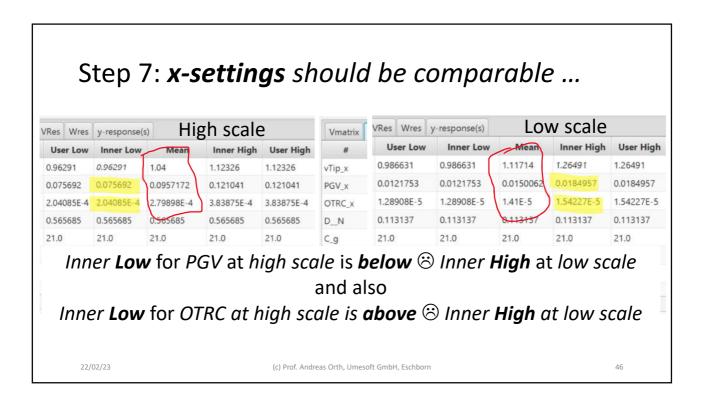



C.g Hen VTip A PGV I. A BMB bMa BMB R0 5715558 21,000003 ,031 1,0345465 1,8100532 14,8578083 ,0938 Copy Ctrl+C 402.084,74835 0 R1 5110547 21,000003 ,031 1,9600636 1,8785923 9,5607057 ,0747 Paste Ctrl+V 402.084,74835 0 R2 ,4084298 21,000003 ,031 1,1148078 2,7294965 9,5607057 ,0747 Comment cell 309.618,1419 0 R4 ,5110059 21,000003 ,031 1,1148078 2,1815946 9,4254903 ,1178 Show All 387.377,95308 0 R5 ,6394085 21,000003 ,031 1,1148078 2,3427921 ,0747 Export 417,433,59683 0 R6 ,5110088 21,000003 ,031 1,1148078 2,3427926 ,0747 Copy Filtered to Clipboard 387.380,18302 0														
C.g Hen VTip A PC L A PC L A B B B B B B C G PC L Copy Crl + C B A D B A D D Copy Crl + C A A D A D <thd< th=""><th>De</th><th>sign ></th><th><</th><th>St</th><th>eŗ</th><th>o 8f</th><th>:: Lo</th><th>ook</th><th>a</th><th>t th</th><th>e c</th><th>les</th><th>ign</th><th>(ι</th></thd<>	De	sign >	<	St	eŗ	o 8f	:: Lo	ook	a	t th	e c	les	ign	(ι
R0 571558 21,000003 .031 1.0345465 1.8100532 14,8578/83 .0938 Copy Ctrl+C 402.084,74835 0 R1 5110547 21,000003 .031 1.0345465 1.8785923 9,5607057 .0747 Paste Ctrl+V 402.084,74835 0 R2 .4084298 21,000003 .031 1.1148078 2,7294965 9,5607057 .0747 Comment cell 417.431,19389 0 R4 .5110059 21,000003 .031 1.1148078 2,1815946 9.4254903 .1178 Filter 417.431,19389 0 R4 .5110059 21,000003 .031 .1148078 2,1815946 9.4254903 .1178 Show All 387.377,95308 0 R5 .6394085 21,000003 .031 .1148078 2,181582 2.3,427921 .0747 Export 417.433,59683 0 R6 .5110088 21,000003 .031 .1148078 2.141582 2.3,427926 .0747 Copy Filtered to Clipboa		A	B				F .	G	1	l	J	K	-	M
R1 5110547 21,000003 .0.31 .9600.66 1,8785923 9,5607057 .0747 Paste Ctrl+V 33.638,684.38 0 R2 .4084298 21,000003 .0.31 .1148078 2,7294965 9,5607057 .0747 Comment cell 30.618,1419 0 R3 .6394048 21,000003 .0.31 .19600.66 1,5014955 9.4254903 .1178 Filter 417.431,19389 0 R4 .5110059 21,000003 .0.31 .1148078 2,1815946 9.4254903 .1178 Show All 387.377.95308 0 R5 .6394085 21,000003 .0.31 .1148078 2,181582 2,3.427921 .0747 Export 417.433,59683 0 R6 .5110088 21,000003 .0.31 .1148078 2,181582 2,3.427926 .0747 Copy Filtered to Clipboard 387.380,18302 0	2	RO	5715558				1.8100532	14.8578083	-	Сору		Ctrl+C		0
R2 A084298 21,000003 J.03 1,1148078 2,7294965 9,5607057 J.0747 509.618,1419 0 R3 6394048 21,000003 J.031 9,600636 1,5014955 9,4254903 ,1178 Filter 417.431,19389 0 R4 ,5110059 21,0000003 J.031 1,1148078 2,1815946 9,4254903 ,1178 Show All 87.377,95308 0 R5 ,6394085 21,0000003 J.031 9,600636 1,5014869 2,3427921 ,0747 Export 417.433,596683 0 R6 ,5110088 21,0000003 J.31 1,1148078 2,181582 2,34279264 ,0747 Copy Filtered to Clipboard 387.380,18302 0	3	R1								Paste		Ctrl+V		0
R3 Asymptotic Constraint Constraint	4	R2	,4084298	21,0000003	,031	1,1148078	2,7294965	9,5607057	,0747	Comment cell		1	309.618,1419	0
Kat JS110059 Z1,000003 JJ31 T,114078 Z,1815946 9,4254903 T176 Export 567,37,95308 0 R5 ,6394085 21,0000003 ,031 9,600636 1,5014869 23,427921 ,0747 Export 417,433,59668 0 R6 ,5110088 21,0000003 ,031 1,1148078 2,181582 23,4279264 ,0747 Copy Filtered to Clipboard 387,380,18302 0	5	R3	,6394048	21,0000003	,031	,9600636	1,5014955	9,4254903	,1178	Filter			417.431,19389	0
R6 .5110088 21,000003 .031 1,1148078 2,181582 23,4273c1 .0747 Copy Filtered to Clipboard 387,380,18302 0	6	R4	,5110059	21,0000003	,031	1,1148078	2,1815946	9,4254903	,1178-	Show All			387.377,95308	0
101 101 111 1000 21000 2100 21000 21000 21000 2000 1000 0	7	R5	,6394085	21,0000003	,031	,9600636	1,5014869	23,427921	,0747-	and over			417.433,59683	0
R7 7999943 21.0000003 031 9600636 1.2000879 23.0965892 1178 Merge Filtered Clipboard 522.270.9861 0	8	R6			1000	1400.0700.00							00100000000000	0
	9	R7	,7999943	21,0000003	,031	,9600636	1,2000879	23,0965892	-		Clipboar	d		0
R8 .6393474 21,0000003 .031 1,1148076 1,743665 23,0965892 ,1178 Fit Columns 484.669,73363 0 Modde Export	10	R8	,6393474	21,0000003	,031	1,1148078	1,743665	23,0965892	,1178				484.669,73363	0
													(<i>n</i>	ot
ar (<i>not</i>) uu	_ u _	xx 🔘 x 🔘	scaled	ł							(to	o a
(not														
(not			22/	02/23					(c)	Prof. Andreas	Orth, Ui	nesoft Gi		

Desi	ign a	nd u-	Form	ulae	for N	<i>NODDE</i>	'®	
	vTip x	PGV x	OTRC x	bMa	bMa y			
RO	0,01704	-1,019	-3,553	0	0			
R1	-0,01642	-1,12091	-3,6902	0	0			
R2	0,05049	-1,12091	-3,6902	0	0			
R3	-0,01642	-0,91708	-3,6902	0	0			
R4	0,05049	-0,91708	-3,6902	0	0			
R5	-0,01642	-1,12091	-3,4158	0	0			
R6	0,05049	-1,12091	-3,4158	0	0			
R7	-0,01642	-0,91708	-3,4158	0	0			
R8	0,05049	-0,91708	-3,4158	0	0			
	D	C	(10^(- 1.	5*v1+0.49	2178*v2+0	0.365707*v3+2	1.579013987	[,] 00660
	Ν		(10^(2.5*	v1 - 0.492	178*v2 - 0	.365707*v3 - 3	3.357165289	940327
	Q	С	(10^(7.31	.414E-8*v	1 - 0.03128	379*v2+1.4628	33*v3+4.537	90493
	bN	_ //a_C	(10^(v6))	/0.01				
	bN	ИауС	Log10(v4	*0 01)				





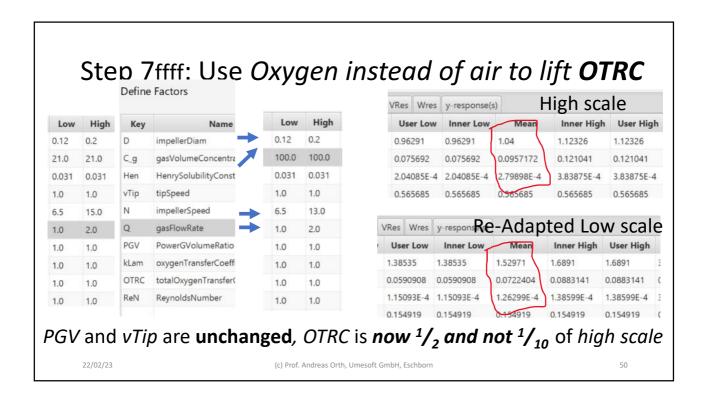

Step 1f: stop and i	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(and	gru	ומחז	<i>e)</i>	
	Factor	Input VMatrix Input Relay Inpu	it VMa	atrix Ke	eep Colum	ns Respon
Isn't the aim of <i>scale</i>	Define	Factors				
<i>down</i> to find the						
•	Key	Name	Low	High	Role	Unit
<i>right settings</i> to use	D	impellerDiam	0.08	0.16	CONTR	m
at the low scale?	C_g	gasVolumeConcentration	21.0	21.0	CONST	%
	Hen	HenrySolubilityConst	0.031	0.031	CONST	SI
	vTip	tipSpeed	1.0	1.0	CDEP	m/s
Then why do we have	N	impellerSpeed	6.5	15.0	CONTR	revpm
Then why do we have	Q	gasFlowRate	1.0	2.0	CONTR	m^3/min
to enter these values	PGV	PowerGVolumeRatio	1.0	1.0	CDEP	W/m^3
h of o wo wwo ot own?	kLam	oxygenTransferCoeffiMixedZone	1.0	1.0	CDEP	1/s
before we start?	OTRC	totalOxygenTransferCapacity	1.0	1.0	CDEP	1/s
	ReN	ReynoldsNumber	1.0	1.0	CDEP	SI

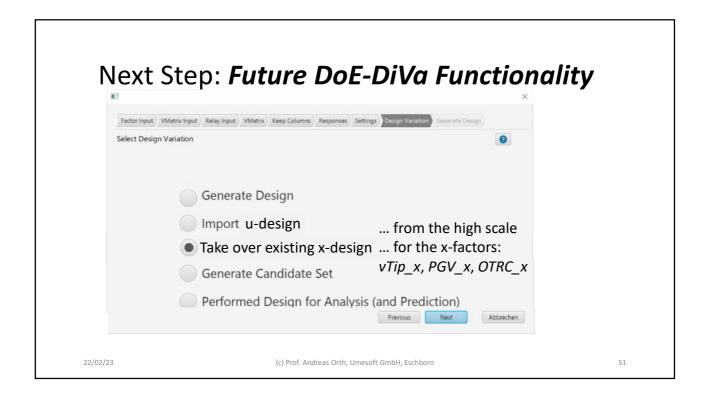
tep 2: x-	τα	CTO	rs		((in	th	is c	ase,	as	befo	ore, just	ident
Factor Input VMatrix Inp	ut Rela	y Input	VMatrix	Ke	ep Coli	umns	Resp	onses	Settings	Design	Variation	Generate Design	
How Would you like to	genera	ite a VI	Matrix?										0
Import Vmatrix		1	4	в	с	D	E	F	G	н	1	J	
import vination	1		D	_x v	Tip_x	N_x	Qx	PGV_x	kLam_x	kLab_x	OTRC_x	ReN_x	
System Suggest	2	D	1	0	/	0	0	0	0	0	0	0	
6	3	C_g	0	0	í	0	0	0	0	0	0	0	
Edit	4	Hen	0	0		0	0	0	0	0	0	0	
	5	vTip	0	1		0	0	0	0	0	0	0	
Identity	6	N	0	0		1	0	0	0	0	0	0	
	7	Q	0	0		0	1	0	0	0	0	0	
	8	PGV	0	0		0	0	1	0	0	0	0	
Adjust Vmatrix	9	kLam	0	0		0	0	0	1	0	0	0	
	10	kLab	0	0		0	0	0	0	1	0	0	
	11	OTRC	0	0		0	0	0	0	0	1	0	
	12	ReN	0	0		0	0	0	0	0	0	1	

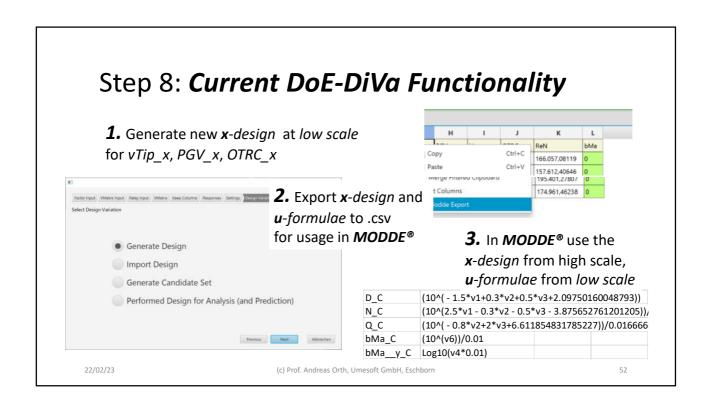
				: are t					
	(Vr	mat	rix-In	lfo, Keep	o Colum	ns and	' Respo	nses)	
8				<u> </u>	/				×
					V				
Factor Input	VMatrix Input	Relay	Input VM	latrix Keep Colur	nns Responses	Settings De	sign Variation	Generate Des	ign
Select Dime	nsion-less fac	ctor(s)	to Keep						0
Select Dime	nsion-less fac	ctor(s)	to Keep						0
Select Dime	nsion-less fac			rolation					0
D_x VTip_x	nsion-less fac		to Keep Matrix : Cori	relation					0
D_x VTip_x N_x	nsion-less fa			relation	c	D	E	F	G
D_x ✓ vTip_x N_x Q_x	nsion-less fa		Matrix : Con		c vTip_X	D N_X	E Q_X	F PGV_x	
D_x vTip_x N_x Q_x V PGV_x	nsion-less fa	VI	Matrix : Con	В				-	G
D_x ✓ vTip_x N_x Q_x	nsion-less fa	VI 1 2	Matrix : Con A	D_x		N_X	Q.X	PGV_x	G kLam_x

47

Step 7f: ... otherwise check x-settings / VRES If they are "too different", Low scale VRes Wres y-response(s) Vmatrix **User Low** Inner Low Inner High **User High** use infos in VRES (Tapprox) 0.986631 0.986631 1.26491 1.26491 1.11714 vTip_x and WRES (Tapprox⁻¹) to get 0.0121753 0.0121753 0.0150062 0.0184957 0.0184957 PGV_x 1.28908E-5 1.28908E-5 1.41E-5 1.54227E-5 1.54227E-5 OTRC × indications on which u-DN 0.113137 0.113137 811213/ 0.113137 0.113137 factor limits or depend-C_g 21.0 21.0 21.0 21.0 21.0 ency formulae should be Hen 0.0309999 0.0309999 0.0309999 0.0309999 0.0309999 vTip_D 1.11714 1.11714 1.11714 1.11714 1.11714 changed NN 9.87421 9.87421 9.87421 9.87421 9.87421 Use VRES (i.e. Tapprox) Information to lift PGV and OTRC at low scale

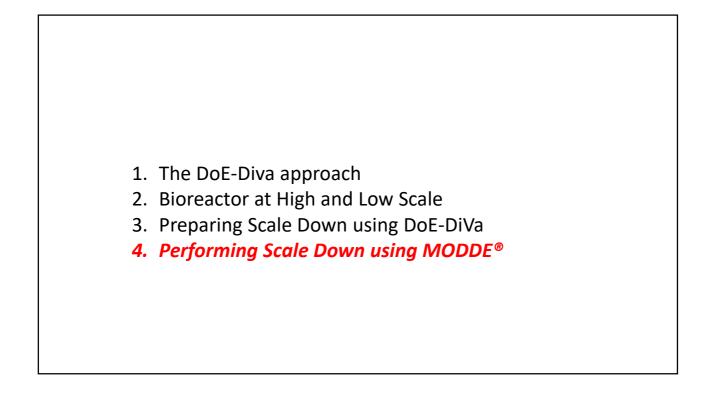

se Ville (i.e. Tapprox) injoinnation to nje **i dv** and **Orice** at io

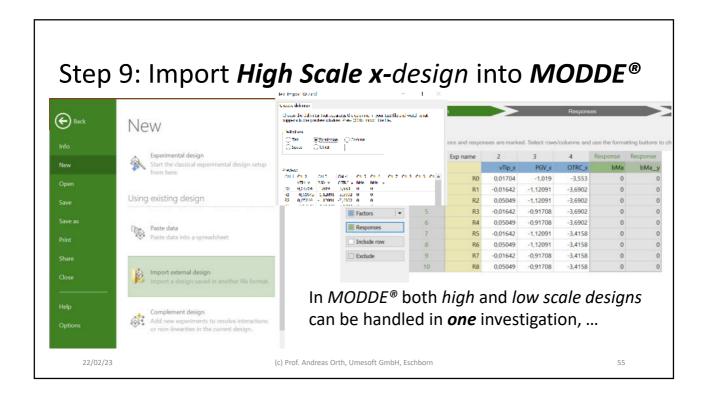

22/02/23

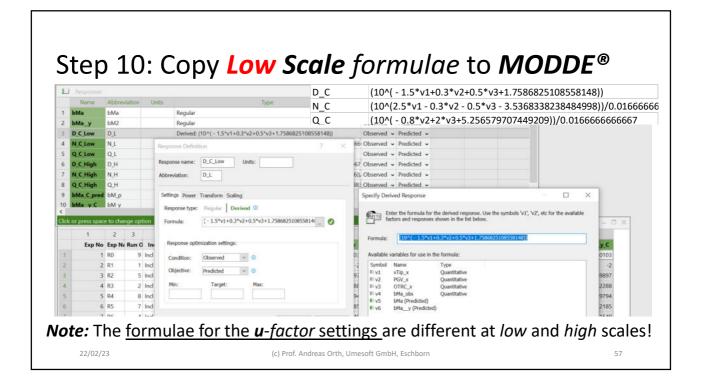

(c) Prof. Andreas Orth, Umesoft GmbH, Eschborn

Step 7ff: Use VRES to lift PGV and OTRC **Define Factors** Vmatrix x-Settings u-Settings VRes Wres y-response(s) try this в с D E F G A High Low High Nam Low Key PGV x OTRC_X Hen D_N C_g 1 vTip_x 0.12 0.2 D impellerDiam 0.08 0.16 2 D 5 2 0 0 0 21.0 21.0 21.0 C_g gasVolumeConcent 21.0 3 DN 0 -1 -2 1 0 -5 0.031 0.031 HenrySolubilityCon: 0.031 0.031 Hen 4 0 0 0 0 0 C_g 1 1.0 tipSpeed 1.0 1.0 1.0 vTip 0 5 Hen 0 0 0 0 1 impellerSpeed 6.5 15.0 6.5 N 15.0 vTip_D 6 1 0 0 0 0 0 1.0 2.0 Q 1.0 gasFlowRate 2.0 7 3 1.2 0 0 0 PGV PowerGVolumeRati 1.0 1.0 8 N_N -3 1.2 0 0 0 1.0 1.0 -1 0 0 1.0 9 0 -,5 ,3 0 0 kLam oxygenTransferCoe 1.0 1.0 1.0 $D \not\uparrow, N \not\nearrow, Q \searrow$ to improve PGV, OTRC totalOxygenTransfe 1.0 1.0 1.0 1.0 ReN ReynoldsNumber 1.0 1.0 1.0 1.0 D, N, Q, to improve OTRC 22/02/23 (c) Prof. Andreas Orth, Umesoft GmbH, Eschborn 48

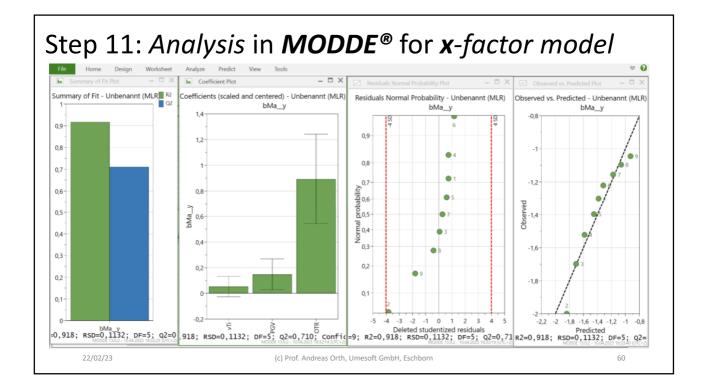
VRes Wres	y-response(s	s) Hi	gh scal	е	Vmatrix	N	/Res Wres	y-response(s)	Adap	ted Lov	w scal
User Low	Inner Low	Mean	Inner High	User High	#	v	User Low	Inner Low	Mean	Inner High	User High
0.96291	0.96291	1.04	1.12326	1.12326	vTip_x		1.38535	1.38535	1.52971	1.6891	1.6891
0.075692	0.075692	0.0957172	0.121041	0.121041	PGV_x		0.0590908	0.0590908	0.0722404	0.0883141	0.0883141
2.04085E-4	2.04085E-4	2.79898E-4	3.83875E-4	3.83875E-4	OTRC_x		2.41485E-5	2.41485E-5	2.65003E-5	2.90804E-5	2.90804E-5
0.565685	0.565685	0.565685	0.565685	0.565685	D_N		0.154919	0.154919	0.154919	0.154919	0.154919
21.0	21.0	21.0	21.0	21.0	C_g		21.0	21.0	21.0	21.0	21.0
0.0309999	0.0309999	0.0309999	0.0309999	0.0309999	Hen		0.0309999	0.0309999	0.0309999	0.0309999	0.0309999
1.04	1.04	1.04	1.04	1.04	vTip_D		1.52971	1.52971	1.52971	1.52971	1.52971
1.83849	1.83849	1.83849	1.83849	1.83849	N N		9.87421	9.87421	9.87421	9.87421	9.87421

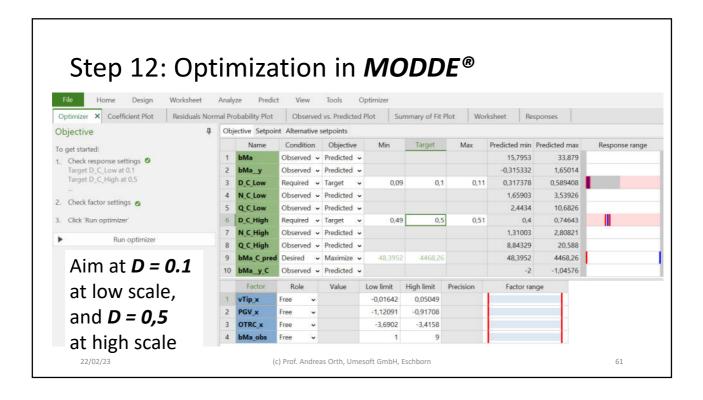


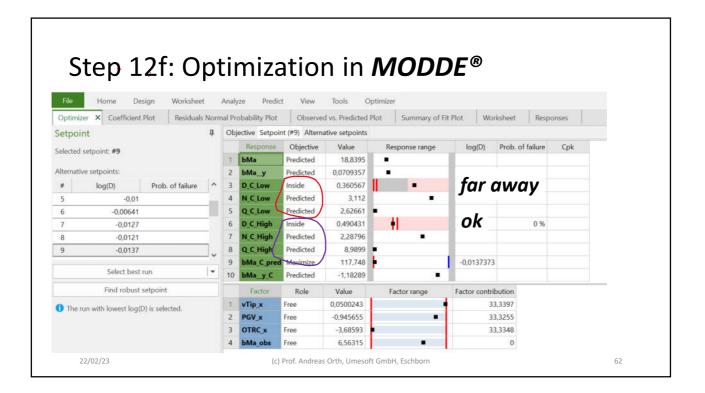


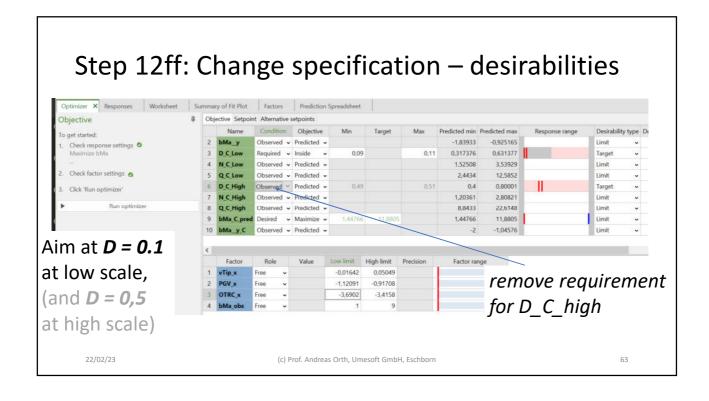

D_C				707*v3+1.57901398700660	
N_C Q C				07*v3 - 3.3571652894032 2+1.46283*v3+4.53790493	0027
bMa C	· ·	6))/0.01	0.0312075 0		scale
bMay_C	· ·	v4*0.01) T , C	and T -1	T approx ⁻¹ at high	n Scale
		,	,	Please note: the	y are <u>different</u> !
		D_C	· · ·	/1+0.3*v2+0.5*v3+1.75868	
Lov	A/	N_C	(10^(2.5*v1	- 0.3*v2 - 0.5*v3 - 3.53683	38238484998))/0.0166666
LUI	V	Q_C	(10^(- 0.8*)	/2+2*v3+5.2565797074492	09))/0.01666666666667
SCO	le	bMa_C	(10^(v6))/0.		Tapprox ⁻¹ at low Scale
		bMay_C	1 10/ 1*0	⁰¹ T_v and T_v ⁻¹	annroy at low Scale

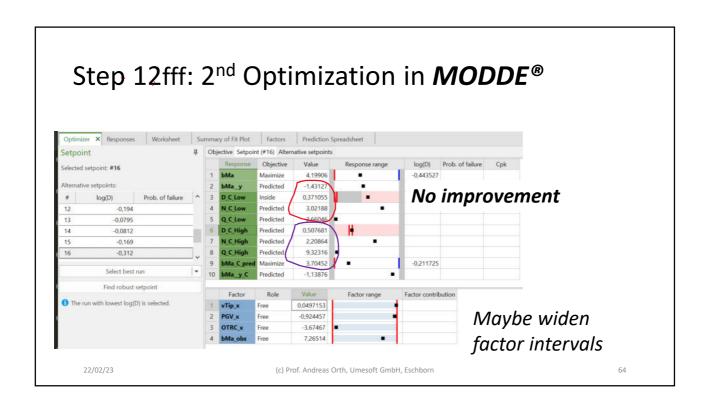
Г

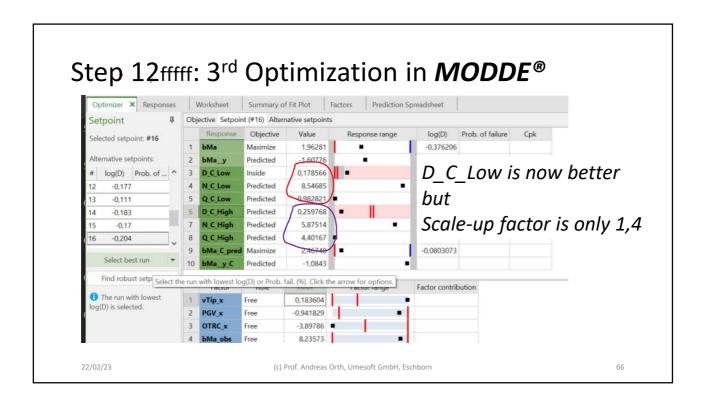


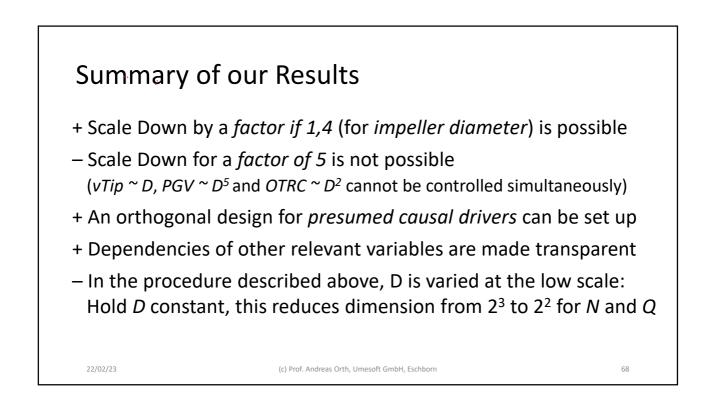

	Г	The Scale x- design, set z -responses										?		
because the <i>x-de</i> :	siq	n foi	-	Name	Abbrevia	tion U	nits	Type	Use	Factor name	: bMa_obs	Units:		
	-			1 vTip_x	vTi		11.75		- Controller	Abbreviation	n: bMo			
low and high scale a	re	the		2 PGV_x	PGV		(Quantitative	- Controller					
same.		3 OTRC_x	OTR			-	- Controller	General	Transform Scalin	g Precision				
Same.		4 bMa_obs + Add	bMo		(Quantitative	- Uncontro	Type of	factor: Juantitative		Settin	gs -		
Don't forget : For			Ļ	T AGO.		_		,		00	Quantitative multile	evel		
				1 bMa				Predicted ~			Jualitative formulation			
each z -response				2 bMa_y + Add		Obse	erved 🗸	Predicted ~			iller			
(i.e. measured	111	Worksheet		< /ul>					-	Use:	lime			
•		1	2	Double-click or	press return	to edit th	e respons	50			Controlled			
response) we need			Exp Nam		Incl/Excl	vTip			OTRC_x		Incontrolled Constant			
1 1	1		R0 R1		Ind		1704 1642	-1.019	-3,553					
an uncontrolled	3		R2		Incl			-1,12091	-3,6902			1	OK	Cance
factor (here bio-	4	4	R3	2	Ind	-0,0	1642	-0,91708	-3,6902		0	0		- Innerezieretetet
•	5	5	R4	8	Ind	• 0,0	5049	-0,91708	-3,6902		0	0		
Mass, bMa obs)	6		R5	-				-1,12091	-3,4158		0	0		
	7		R6	-				-1,12091	-3,4158		0	0		
	8	8	R7 R8		Ind		1642 5049	-0,91708	-3,4158 -3,4158		0	0		




Step 10f: Copy High Scale formulae to MODDE® D_C (10^(- 1.5*v1+0.492178*v2+0.365707*v3+1.5790139870066067)) NC (10^(2.5*v1 - 0.492178*v2 - 0.365707*v3 - 3.357165289403276))/(bMa. bMa Regular bMa_y bM2 Regular QC (10^(7.31414E-8*v1 - 0.0312879*v2+1.46283*v3+4.537904938837 Derived: (10^(- 1.5*v1+0.3*v2+0.5*v3+1.75868251085581 D C Low DL 3 Derived: (10^(2.5*v1 - 0.3*v2 - 0.5*v3 - 3.536833823848499 (10^(v6))/0.01 N C Low NL 4 Derived: (10^(- 0.8*v2+2*v3+5.256579707449209))/0.0166 bMa_y_C Log10(v4*0.01) QCLow QL 5 D C High DH Derived: (10^(- 1.5*v1+0.492178*v2+0.365707*v3+1.5790139870066067 Observed - Predicted -N C High N_H 3276)), Observed v Predicted v Q.C.High QH 8 93883 Observed 🗸 Predicted 🗸 Response name: D_C_High Units: 9 bM_p Specify Derived Response X bM v 10 D_H Abbreviation: Enter the formula for the derived response. Use the symbols 'v1', 'v2', etc for the available factors and responses shown in the list below. Settings Power Transform Scaling 2 3 [10^(-1.5*v1+0.492178*v2+0.365707*v3+1.5790139870066067)] Response type: Regular Derived @ Formula: a_ Exp No Exp Na R In O y C 2178*v2+0.365707*v3+1.5790139870066067)) Formula: 1 R0 Available variables for use in the formula 2 R1 Symbol Name Type Name vTip_x PGV_x OTRC_x bMa_obs bMa (Predicted) bMa_y (Predicted) ■ v1 ■ v2 ■ v3 ■ v4 ■ v5 ■ v6 Response optimization settings 3 R2 5 69897 1,52288 4 R3 2 ~ 0 Condition: Observed 5 R4 39 ,39794 8 ~ 0 Objective: Predicted 6 R5 22 1,22185 7 R6 Target 1,1549 8 R7 09691 04 9 R8 1.04576 22/02/23 (c) Prof. Andreas Orth, Umesoft GmbH, Eschborn 58


1	bMa	bMa		Regular						Desired ~	Maximize	~							
2	bMa_y	bM2		Regular						Observed ~	bserved • Predicted • Design to perform								
3	D_C_Low	D_L		Derived: (10^(- 1.5*v1+0.3	v2+0.5*v3+	1.75868251	08558148))	Observed ~									
4	N_C Low	N_L		Derived: (10^(2	2.5*v1 - 0.3*v	2 - 0.5*v3 -	3.53683382	38484998))	/0.0166666	Observed ~	Predicted	at low scale							
5	Q.C.Low	QL		Delived: (10.4 - 0.9 A5+5 A2+3 520213) 01443503 [[0.010000000000] ODSelved Cherced C															
6	D_C_High	D_H		Derived: (10^(- 1.5*v1+0.492178*v2+0.365707*v3+1.5790139870066067 Observed v Predicted v															
7	N_C_High	N_H		Derived: (10^(2	2.5*v1 - 0.492	2178*v2 - 0.3	65707*v3 -	3.3571652	89403276))	Observed ~	Predicted	•	/	Eau	lival	ent l	Desi		
8	Q_C_High	Q_H		Derived: (10^(7		1 - 0.031287	9*v2+1.462	83°v3+4.5	3790493883				0						
9	bMa_C_pred			Derived: (10^(v							rved - Predicted - at high scale								
0	bMa v C	bM v												I		2201	-		
		Din Y		Derived: Log10	(v4*0.01)					Observed ~	Predicted	· /			-1				
i lid	k or press spac	e to change op	tion	Derived: Log10	104-0.01)				_								- 1		
lic	k or press spac	-texals	tion 4	Derived: Log10	6	7	8	9	10		Wedicted	13	14	1491		17	- 18		
lic	1	-texals	4			7 OTRC_x	8 bMa_obs	9 bMa	10 bMa_y			13	14	1191	h,		- 18		
1	1 Exp No	e to change op 2 3 Exp Na Run C	4	5	6	7 OTRC_X -3,553	9	9 bMa 5	0.00	Lo	οw,	13	-	1491	h,	17	- 18		
1 2	1 Exp No 1	e to change op 2 3 Exp Nz Run C R0 9	4 Incl/Excl	5 vTip_x	6 PGV_x	A DOOL NO. LOCAL	bMa_obs	200720	bMa_y	LC D_C_Low	N_C_Low	13 Q.C.Low	D_C_High	N_C_High	Q.C.High	17	18 bMa_y_C		
1 2 3	1 Exp No 1 2	e to change op 2 3 Exp Na Run C R0 9 R1 1	4 Incl/Excl Incl ~	5 vTip_x 0,01704 -0,01642	6 PGV_x -1,019	-3,553	bMa_obs	200720	bMa_y	LC D_C_Low 0,447633	N_C_Low 2,32336	13 Q.C.Low 5,54538	0,565676	N_C_High 1,83854	Q.C.High 14,1418	17	18 bMa_y_C		
1 2 3 4	1 Exp No 1 2	e to change op 2 3 Exp Na Run C R0 9 R1 1	4 Incl/Excl Incl ~	5 vTip_x 0,01704 -0,01642	6 PGV_x -1,019	-3,553	bMa_obs	200720	bMa_y -1,30103 -2	1 LC D_C_Low 0,447633 0,399889	N_C_Low 2,32336 2,40791 3,53929 2,09166	13 Q.C.Low 5,54538 3,5568	0,565676 0,503993 0,4 0,634959	N_C_High 1,83854 1,91054	Q.C.High 14,1418 8,97412	17	18 bMa_y_C -1,30103 -2		
1 2 3 4 5	1 Exp No 1 2	e to change op 2 3 Exp Nz Run C R0 9	4 Incl/Excl Incl ~	5 vTip_x 0,01704 -0,01642	6 PGV_x -1,019	-3,553	bMa_obs	200720	bMa_y -1,30103 -2 -1,69897	1LC D.C.Low 0,447633 0,399889 0,317376	N.C.Low 2,32336 2,40791 3,53929	13 Q.C.Low 5,54538 3,5568 3,5568	0,565676 0,503993 0,4	N.C.High 1,83854 1,91054 2,80821	Q.C.High 14,1418 8,97412 8,97412	17	18 bMa_y.C -1,30103 -2 -1,69897		
1 2 3 4 5 6	1 Exp No 1 2 Dis	e to change op 2 3 Exp N: Run C R0 9 R1 1 Sapp	4 Incl/Excl Incl Incl Ointi	5 vTip_x 0,01704 -0,01642 ng?	6 PGV_x -1,019 -1,12091	-3,553 -3,6902	bMa_obs	200720	bMa_y -1,30103 -2 -1,69897 -1,52288	1,1 D_C_Low 0,447633 0,399889 0,317376 0,46035	N_C_Low 2,32336 2,40791 3,53929 2,09166	13 Q.C.Low 5,54538 3,5568 3,5568 2,4434	0,565676 0,503993 0,4 0,634959	N.C.High 1,83854 1,91054 2,80821 1,51647	Q_C_High 14,1418 8,97412 8,97412 8,8433	17	18 bMa_y.C -1,30103 -2 -1,69897 -1,52288		
1 2 3 4 5 6 7	1 Exp No 1 2 Dis	e to change op 2 3 Exp N: Run C R0 9 R1 1 Sapp	4 Incl/Excl Incl Incl Ointi	5 vTip_x 0,01704 -0,01642	6 PGV_x -1,019 -1,12091	-3,553 -3,6902	bMa_obs	200720	bMa_y -1,30103 -2 -1,69897 -1,52288 -1,39794 -1,22185 -1,1549	1.Com 0,447633 0,399889 0,317376 0,46035 0,365362 0,548453 0,435286	N_C_Low 2,32336 2,40791 3,53929 2,09166 3,07444 1,75566 2,58057	13 Q.C.Low 5,54538 3,5568 2,4434 2,4434 12,5852 12,5852	 C. High 0,565676 0,503993 0,4 0,634959 0,503942 0,635002 0,503976 	N.C.High 1,83854 1,91054 2,80821 1,51647 2,229 1,51637 2,22885	Q_C_High 14,1418 8,97412 8,97412 8,8433 8,8433 22,6148 22,6148	17	18 bMa_y.C -1,30103 -2 -1,69897 -1,52288 -1,39794 -1,22185 -1,1549		
1 2 3 4 5 6 7 8	1 Exp No 1 2 Dis Sco	e to change op 2 3 Exp Na Run C R0 9 R1 1 Sapp ale d	4 Ind/Excl Ind ind ointi	5 vTip_x 0,01704 -0,01642 ng?	6 PGV_x -1,019 -1,12091	-3,553 -3,6902 1.5	bMa_obs 5 1	5	bMa_y -1,30103 -2 -1,69897 -1,52288 -1,39794 -1,22185	1, Composition of the second s	N_C_Low 2,32336 2,40791 3,53929 2,09166 3,07444 1,75566	13 Q.C.Low 5,54538 3,5568 3,5568 2,4434 2,4434 12,5852	0,565676 0,503993 0,4 0,634959 0,503942 0,635002	N.C.High 1,83854 1,91054 2,80821 1,51647 2,229 1,51637	Q_C_High 14,1418 8,97412 8,97412 8,8433 8,8433 22,6148	17	18 bMa_y.C -1,30103 -2 -1,69897 -1,52288 -1,39794 -1,22185		





File				1.000	19.70	Predict	Viev		Optimize					C_g	100.0	100.0
Opti	mizer R	esponses	Worksheet	Summ	ary of Fit		Factor		ction Spreads	1000			45	Hen	0.031	0.031
	1 vTip_x	2 PGV x	3 OTRC x	4 bMa obs	5 6	7 8	9 10 Jer Up	11 D C Low	12 N C Low	13 Q C Low	14 D C High	15 N C High	16 Q C High	vTip	1.0	1.0
	0.18461	-1.1412	-3.89861	1. 19 10 10 10 10 10 10	162)83		Carlo Deserve	0.154918	9.87433	1,41407	0.206384	7,41196	4,45408	100 B 100		
	0,14156	-1.2285	-3,93901		283 337			0,161543	8.57576	1,37883	0.209657	6.60769	3,91194	N	6.5	13.0
	0,22765	-1,2285	-3,93901		165 '38			0,119992	14,0766	1,37883	0.155731	10,8461	3,91194	Q	1.0	2.0
	0,14156	-1,05401	-3,93901	1	192 525	34 124	29)19	0,182236	7,60196	0,999814	0,255499	5,42213	3,86306		1.0	1.0
	0,22765	-1,05401	-3,93901	1	462 177	47 623	32)27	0,135363	12,4782	0,999814	0,189782	8,9001	3,86306			
	0,14156	-1,2285	-3,85821	1	004)64	45 326	45 106	0,177291	7,81398	2,00037	0,224419	6,17307	5,1355€	kLam	1.0	1.0
	0,22765	-1,2285	-3,85821	ł	065 64	35 824	58 !91	0,13169	12,8262	2,00037	0,166695	10,1327	5,13556	OTRC	1.0	1.0
	0,14156	-1,05401	-3,85821	1	108)53	62 663	58 167	0,200002	6,92669	1,4505	0,273488	5,06549	5,07141	DeN	1.0	1.0
	0 22765	-1.05401	-3.85821	1	276 268	R4 161	33 102	0 148559	11 3697	1 4505	0 203144	8 31469	507141	ReN	1.0	1.0

